數(shù)列{an}中,a1=100,an+1=an+2,則a100=________.

298
分析:先由等差數(shù)列的定義,判斷出是等差數(shù)列,然后利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng),求出a100即可.
解答:∵an+1=an+2(n≥1),
∴an+1-an=2
∴數(shù)列{an}是以a1=100為首項(xiàng),以2為公差的等差數(shù)列
∴an=100+(n-1)×2=2n+98
∴a100=200+98=298.
故答案為:298.
點(diǎn)評:本題主要考查了等差數(shù)列的通項(xiàng)公式,注意在利用等差數(shù)列的通項(xiàng)公式前,先判斷出數(shù)列是等差數(shù)列,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,an=
12
an-1+1(n≥2),求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,則
lim
n→∞
(a1+a2+…+an)等于( 。
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=-60,an+1-an=3,(1)求數(shù)列{an}的通項(xiàng)公式an和前n項(xiàng)和Sn(2)問數(shù)列{an}的前幾項(xiàng)和最小?為什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,對?n∈N*an+2an+3•2n,an+1≥2an+1,則a2=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•長寧區(qū)一模)如果一個(gè)數(shù)列{an}對任意正整數(shù)n滿足an+an+1=h(其中h為常數(shù)),則稱數(shù)列{an}為等和數(shù)列,h是公和,Sn是其前n項(xiàng)和.已知等和數(shù)列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

同步練習(xí)冊答案