【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, AD丄AC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為( )
A.7B.12C.6D.
【答案】C
【解析】
設三棱錐A﹣BCD外接球的半徑為R,三棱錐的外接球球心為O,△ABC的外心為O1,△ABC的外接圓半徑為r,取DC的中點為O2,過O2作O2E⊥AC,則OO1⊥平面ABC,OO2⊥平面ADC,連結(jié)OA,O1A,則O1A=r,設AD=AC=b,則OO1=O2Eb,由S=4πR2=28π,解得R,由正弦正理求出b,若三棱錐A﹣BCD的體積最大,則只需△ABC的面積最大,由此能求出三棱錐A﹣BCD的體積的最大值.
根據(jù)題意,設三棱錐A﹣BCD外接球的半徑為R,
三棱錐的外接球球心為O,
△ABC的外心為O1,△ABC的外接圓半徑為r,
取DC的中點為O2,過O2作O2E⊥AC,
則OO1⊥平面ABC,OO2⊥平面ADC,
如圖,連結(jié)OA,O1A,則O1A=r,
設AD=AC=b,則OO1=O2Eb,
由S=4πR2=28π,解得R,
在△ABC中,由正弦正理得2r,
∴2r,解得b,
在Rt△OAO1中,7=r2+()2,解得r=2,b=2,∴AC=2,
若三棱錐A﹣BCD的體積最大,則只需△ABC的面積最大,
在△ABC中,AC2=AB2+BC2﹣2ABBCcos∠ABC,
∴12=AB2+BC2﹣ABBC≥2ABBC﹣ABBC,
解得ABBC≤12,
∴3,
∴三棱錐A﹣BCD的體積的最大值:
6.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱柱中,平面是線段上的動點,是線段上的中點.
(Ⅰ)證明:;
(Ⅱ)若,且直線所成角的余弦值為,試指出點在線段上的位置,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)在上有意義,實數(shù)和滿足,若在區(qū)間上不存在最小值,則稱在上具有性質(zhì).
(1)當,且在區(qū)間上具有性質(zhì)時,求常數(shù)的取值范圍;
(2)已知,且當,,判斷在區(qū)間上是否具有性質(zhì),請說明理由:
(3)若對于滿足的任意實數(shù)和,在上具有性質(zhì)時,且對任意,當時有:,證明:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:(常數(shù)),.數(shù)列滿足:.
(1)求的值;
(2)求出數(shù)列的通項公式;
(3)問:數(shù)列的每一項能否均為整數(shù)?若能,求出k的所有可能值;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內(nèi),已知點及線段,在線段上任取一點,線段長度的最小值稱為“點到線段的距離”,記為.
(1)設點,線段 ,求;
(2)設, , , ,線段,線段,若點滿足,求關于的函數(shù)解析式,并寫出該函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,右頂點為,且過點,圓是以線段為直徑的圓,經(jīng)過點且傾斜角為的直線與圓相切.
(1)求橢圓及圓的方程;
(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點,且滿足?若存在,請求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過多年的運作,“雙十一”搶購活動已經(jīng)演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2018年“雙十一”網(wǎng)購狂歡節(jié),某廠家擬投入適當?shù)膹V告費,對網(wǎng)上所售產(chǎn)品進行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),每一件產(chǎn)品的銷售價格定為元,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,順次是橢圓:的右頂點、上頂點和下頂點,橢圓的離心率,且.
(1)求橢圓的方程;
(2)若斜率的直線過點,直線與橢圓交于,兩點,試判斷:以為直徑的圓是否經(jīng)過點,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com