【題目】某地方政府召開(kāi)全面展開(kāi)新舊動(dòng)能轉(zhuǎn)換重大工程動(dòng)員大會(huì),動(dòng)員各方力量,迅速全面展開(kāi)新舊動(dòng)能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前、后生產(chǎn)的大量產(chǎn)品中各抽取了200件作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖所示的是設(shè)備改造前樣本的頻率分布直方圖.

1)若設(shè)備改造后樣本的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,求改造后樣本中不合格品的件數(shù);

2)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量標(biāo)值與設(shè)備改造有關(guān).

0

設(shè)備改造前

設(shè)備改造后

合計(jì)

合格品件數(shù)

不合格品件數(shù)

合計(jì)

附參考公式和數(shù)據(jù):

,則,

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】110;(2)列聯(lián)表見(jiàn)解析,有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān).

【解析】

1)設(shè)備改造后該項(xiàng)質(zhì)量指標(biāo)服從正態(tài)分布,得,然后,然后即可求出

2)由設(shè)備改造前樣本的頻率分布直方圖,可知不合格頻數(shù)為,然后填表,再算出即可

解:(1)∵設(shè)備改造后該項(xiàng)質(zhì)量指標(biāo)服從正態(tài)分布

,,

又∵

∴設(shè)備改造后不合格的樣本數(shù)為

2)由設(shè)備改造前樣本的頻率分布直方圖,可知不合格頻數(shù)為

2×2列聯(lián)表如下

設(shè)備改造前

設(shè)備改造后

合計(jì)

合格品

160

190

350

不合格品

40

10

50

合計(jì)

200

200

400

,

∴有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形是邊長(zhǎng)為2的菱形,,的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.

1)證明:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究吸煙與患肺癌的關(guān)系中,通過(guò)收集數(shù)據(jù)、整理分析數(shù)據(jù)得吸煙與患肺癌有關(guān)的結(jié)論,并且在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的,下列說(shuō)法中正確的是(

A.100個(gè)吸煙者中至少有99人患有肺癌

B.1個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺癌

C.100個(gè)吸煙者中一定有患肺癌的人

D.100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒(méi)有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程表示的曲線(xiàn)為的圖象,對(duì)于函數(shù)有如下結(jié)論:①上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則由方程所確定;則正確命題序號(hào)為( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次垃圾分類(lèi)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的100人的得分(滿(mǎn)分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規(guī)定問(wèn)卷得分不低于70分的市民稱(chēng)為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

(2)若問(wèn)卷得分不低于80分的人稱(chēng)為“環(huán)保達(dá)人”.視頻率為概率.

①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;

②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:

紅包金額(單位:元)

10

20

概率

現(xiàn)某市民要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足:對(duì)任意的nN*,都有an+1+Sn+11,又a1

1)求數(shù)列{an}的通項(xiàng)公式;

2)令bnlog2an,求nN*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論:

①在回歸分析模型中,殘差平方和越大,說(shuō)明模型的擬合效果越好;

②某學(xué)校有男教師60名、女教師40名,為了解教師的體育愛(ài)好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線(xiàn)性相關(guān)系數(shù)越大,兩個(gè)變量的線(xiàn)性相關(guān)性越弱;反之,線(xiàn)性相關(guān)性越強(qiáng);

④在回歸方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量增加0.5個(gè)單位.

其中正確的結(jié)論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面為矩形,ABBC1,E,F分別是AB,PC的中點(diǎn),DEPA.

1)求證:EF∥平面PAD;

2)求證:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABC A1B1C1中,ABACBB1BC,點(diǎn)PQ,R分別是棱BCCC1,B1C1的中點(diǎn).

1)求證:A1R//平面APQ;

2)求證:直線(xiàn)B1C⊥平面APQ

查看答案和解析>>

同步練習(xí)冊(cè)答案