【題目】如圖,在四棱錐中,底面,底面是直角梯形,.
(1)在上確定一點,使得平面,并求的值;
(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAB是正三角形,四邊形ABCD是矩形,且平面PAB⊥平面ABCD,PA=2,PC=4.
(Ⅰ)若點E是PC的中點,求證:PA∥平面BDE;
(Ⅱ)若點F在線段PA上,且FA=λPA,當三棱錐B﹣AFD的體積為時,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 |
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),數(shù)列滿足,(,).
(1)求數(shù)列的通項公式;
(2)設,若對恒成立,求實數(shù)的取值范圍;
(3)是否存在以為首項,公比為(,)的數(shù)列,使得數(shù)列的每一項都是數(shù)列的不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓的圓心在軸上,并且過兩點.
(1)求圓的方程;
(2)設直線與圓交于兩點,那么以為直徑的圓能否經(jīng)過原點,若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長為1的正方形,側棱PD=1,PA=PC=.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】校高一(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.
(1)求分數(shù)在的頻率及全班人數(shù);
(2)求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;
(3)若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com