與橢圓共焦點(diǎn)且過點(diǎn)P(2,1)的雙曲線方程是(    )
A.B.C.D.
B

試題分析:在橢圓中,,∴,∴焦點(diǎn)為,設(shè)所求的雙曲線方程為:,由雙曲線的定義可知:,∴,∴,故雙曲線方程為:.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)分別是橢圓C:的左、右焦點(diǎn),過點(diǎn)軸的垂線,交橢圓的上半部分于點(diǎn),過點(diǎn)的垂線交直線于點(diǎn).

(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知左焦點(diǎn)為的橢圓過點(diǎn).過點(diǎn)分別作斜率為的橢圓的動(dòng)弦,設(shè)分別為線段的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段的中點(diǎn),求;
(3)若,求證直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線M: 的準(zhǔn)線過橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.

(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)A(,0),B(,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積為.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)若直線過點(diǎn)F(1,0)且繞F旋轉(zhuǎn),與圓相交于P、Q兩點(diǎn),與軌跡C相交于R、S兩點(diǎn),若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的頂點(diǎn)與焦點(diǎn)分別是橢圓的焦點(diǎn)和頂點(diǎn),若雙曲線的兩條漸近線與橢圓的焦點(diǎn)構(gòu)成的四邊形恰為正方形,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線方程的離心率為,其實(shí)軸與虛軸的四個(gè)頂點(diǎn)和橢圓的四個(gè)頂點(diǎn)重合,橢圓G的離心率為,一定有(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案