設(shè)f(x)是定義在R上的奇函數(shù),且f(x+3)f(x)=-1,f(-2)=1,則f(2012)=______.
∵f(x+3)f(x)=-1,
∴用x+3代替x,得f(x+6)f(x+3)=-1,
由此可得f(x+6)=f(x),得函數(shù)的最小正周期T=6
∴f(2012)=f(335×6+2)=f(2)
∵f(x)是定義在R上的奇函數(shù),且f(-2)=1
∴f(2)=-f(-2)=-1
故答案為:-1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=x2+bx+c,不等式f(x)<0的解集是(0,5),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)=.(1)判斷的奇偶性并說明理由;(2)判斷上的單調(diào)性并加以證明.  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
4x+a
1+x2
的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當n-m取最小值時,點p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點,若存在x0使得f′(x0)=
f(x2)-f(x1)
x2-x1
,x求證x1<|x0|<x2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)F(x)=ex滿足F(x)=g(x)+h(x),且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,則實數(shù)a的取值范圍是(  )
A.(-∞,2
2
)
B.(-∞,2
2
]
C.(0,2
2
]
D.(2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)對于一切實數(shù)x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,則當x∈(0,
1
2
),不等式f(x)+2<logax恒成立時,實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)為偶函數(shù)的是( 。
A.y=x2+xB.y=x5C.y=x+
1
x
D.y=
1
x2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=1-
4
2ax+a
(a>0且a≠1)是定義在(-1,1)上的奇函數(shù).
(1)求a的值
(2)判斷函數(shù)f(x)的單調(diào)性(不用證明),并解關(guān)于t的不等式f(1-t)+f(3-2t)<0.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則不等式f(2x-1)<f(
1
3
)
的解集是______.

查看答案和解析>>

同步練習冊答案