【題目】已知橢圓的左、右頂點分別為AB,點P在橢圓O上運動,若PAB面積的最大值為,橢圓O的離心率為

(1)求橢圓O的標準方程;

(2)B點作圓E的兩條切線,分別與橢圓O交于兩點C,D(異于點B),當r變化時,直線CD是否恒過某定點?若是,求出該定點坐標,若不是,請說明理由.

【答案】12)直線恒過定點.

【解析】

1)根據(jù)已知條件列方程組,解方程組可得.

2)設過B的切線方程,由d=r,利用韋達定理得兩切線PC、PD的斜率、關系,把直線代入橢圓方程求出C、D點坐標,利用兩點式建立CD方程,化簡方程可得.

1)由題可知當點在橢圓的上頂點時,最大,此時,

所以,

所以橢圓的標準方程為:.

2)設過點與圓相切的直線方程為:,即:,

因為直線與圓相切,所以

即得.

設兩切線的斜率分別為,則,

,,

,

,即,∴;

同理:,

,

所以直線的方程為:.

整理得:,

所以直線恒過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.

(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標方程;

(2)若曲線與直線相交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為F,過點F作垂直于x軸的直線與拋物線交于A,B兩點,且以線段AB為直徑的圓過點.

(1)求拋物線C的方程;

(2)設過點的直線分別與拋物線C交于點D,E和點G,H,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)。

1)若是曲線的切線,的值;

2)若,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖的折線圖是某公司20181月至12月份的收入與支出數(shù)據(jù),若從6月至11月這6個月中任意選2個月的數(shù)據(jù)進行分析,則這2個月的利潤(利潤=收入﹣支出)都不高于40萬的概率為(  。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標方程;

(2)若直線軸和y軸分別交于A,B兩點,P為曲線C上的動點,求PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】F是拋物線y24x的焦點,M,P,Q是拋物線上三個不同的動點,直線PM過點FMQOP,直線QPMO交于點N.記點M,P,Q的縱坐標分別為y0,y1y2

1)證明:y0y1y2;

2)證明:點N的橫坐標為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,動圓(圓心為橢圓上異于左右頂點的任意一點),過原點作兩條射線與圓相切,分別交橢圓于兩點,且切線長最小值時,.

(Ⅰ)求橢圓的方程;

(Ⅱ)判斷的面積是否為定值,若是,則求出該值;不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a0,b0,且a+b=2;

1)若ab恒成立,求m的取值范圍;

2)若+≥|x-1|+|x+2|恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案