直線l與拋物線交于A,B兩點(diǎn);線段AB中點(diǎn)為,則直線l的方程為
A.B.
C.D.
C
設(shè);兩式相減得:
所以直線方程為故選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,點(diǎn)A、B、C在此拋物線上,點(diǎn)A坐標(biāo)為(1, 2).若點(diǎn)F恰為的重心,則直線BC的方程為
A、x+y=0                 B、2x+y-1=0
C、x-y=0                 D、2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(12分)(理)拋物線y=ax2+bx在第一象限內(nèi)與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達(dá)到最大值的a、b值,并求Smax

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線()上一點(diǎn)到其準(zhǔn)線的距離為.
(Ⅰ)求的值;
(Ⅱ)設(shè)拋物線上動(dòng)點(diǎn)的橫坐標(biāo)為),過點(diǎn)的直線交于另一點(diǎn),交軸于點(diǎn)(直線的斜率記作).過點(diǎn)的垂線交于另一點(diǎn).恰好是的切線,問是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知的三個(gè)頂點(diǎn)在拋物線:上運(yùn)動(dòng),
(1). 求的焦點(diǎn)坐標(biāo);
(2). 若點(diǎn)在坐標(biāo)原點(diǎn), 且,點(diǎn)上,且 ,
求點(diǎn)的軌跡方程;
(3). 試研究: 是否存在一條邊所在直線的斜率為的正三角形,若存在,求出這個(gè)正三角形的邊長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,當(dāng)過軸上一點(diǎn)的直線與拋物線交于兩點(diǎn)時(shí),為銳角,則的取值范圍 (      )
A.B.C.D.以上選項(xiàng)都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分) 設(shè)拋物線C1x2=4y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線過點(diǎn),則點(diǎn)到此拋物線的焦點(diǎn)的距離為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線x-y=2與拋物線y2=4x交于A、B兩點(diǎn),那么線段AB的中點(diǎn)坐標(biāo)是       

查看答案和解析>>

同步練習(xí)冊答案