【題目】甲乙兩人報名參加由某網絡科技公司舉辦的技能闖關雙人電子競技比賽,比賽規(guī)則如下:每一輪闖關結果都采取計分制,若在一輪闖關中,一人過關另一人未過關,過關者得1分,未過關得分;若兩人都過關或都未過關則兩人均得0.甲、乙過關的概率分別為,在一輪闖關中,甲的得分記為.

1)求的分布列;

2)為了增加趣味性,系統(tǒng)給每位報名者基礎分3分,并且規(guī)定出現(xiàn)一方比另一方多過關三輪者獲勝,此二人比賽結束.表示甲的累積得分為時,最終認為甲獲勝的概率,則,其中,,令.證明:點的中點橫坐標為;

3)在第(2)問的條件下求,并嘗試解釋游戲規(guī)則的公平性.

【答案】1)分布列見解析;(2)見解析;(3,試解釋游戲規(guī)則的公平性見解析

【解析】

1)由題意得:,分別求出相應的概率,由此能求出的分布列.

2)由題意得,,,推導出,根據中點公式能證明點的中點橫坐標為;

(3)由,求出,從而,,由此推導出甲獲勝的概率非常小,說明這種游戲規(guī)則是公平的.

1

,

,

,

的分布列為:

0

1

2)由題意得:

,

.

于是,有,整理可得:,

根據中點公式有:,命題得證.

3)由(2)可知,

于是

,所以,,

.

表示最終認為甲獲勝概率,由計算結果可以看出,

在甲過關的概率為0.5,乙過關的概率為0.6時,

認為甲獲勝的概率為,此時得出甲獲勝的概率非常小,

說明這種游戲規(guī)則是公平的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,,的中點.

(Ⅰ)求證:平面;

(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201988日是我國第十一個全民健身日,其主題是:新時代全民健身動起來.某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[1020),[2030),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.

1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;

2)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機,若要擊落敵機,需命中機首2次或命中機中3次或命中機尾1次,已知A每次射擊,命中機首、機中、機尾的概率分別為0.2、0.4、0.1,未命中敵機的概率為0.3,且各次射擊相互獨立。若A至多射擊兩次,則他能擊落敵機的概率為( )

A. 0.23 B. 0.2 C. 0.16 D. 0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某健身機構統(tǒng)計了去年該機構所有消費者的消費金額(單位:元),如下圖所示:

1)將去年的消費金額超過 3200 元的消費者稱為“健身達人”,現(xiàn)從所有“健身達人”中隨機抽取 2 人,求至少有 1 位消費者,其去年的消費金額超過 4000 元的概率;

2)針對這些消費者,該健身機構今年欲實施入會制,詳情如下表:

會員等級

消費金額

普通會員

2000

銀卡會員

2700

金卡會員

3200

預計去年消費金額在內的消費者今年都將會申請辦理普通會員,消費金額在內的消費者都將會申請辦理銀卡會員,消費金額在內的消費者都將會申請辦理金卡會員. 消費者在申請辦理會員時,需-次性繳清相應等級的消費金額.該健身機構在今年底將針對這些消費者舉辦消費返利活動,現(xiàn)有如下兩種預設方案:

方案 1:按分層抽樣從普通會員, 銀卡會員, 金卡會員中總共抽取 25 位“幸運之星”給予獎勵: 普通會員中的“幸運之星”每人獎勵 500 元; 銀卡會員中的“幸運之星”每人獎勵 600 元; 金卡會員中的“幸運之星”每人獎勵 800 .

方案 2:每位會員均可參加摸獎游戲,游戲規(guī)則如下:從-個裝有 3 個白球、 2 個紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個球.若摸到紅球的總數(shù)消費金額/元為 2,則可獲得 200 元獎勵金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎勵金;其他情況不給予獎勵. 規(guī)定每位普通會員均可參加 1 次摸獎游戲;每位銀卡會員均可參加 2 次摸獎游戲;每位金卡會員均可參加 3 次摸獎游戲(每次摸獎的結果相互獨立) .

以方案 2 的獎勵金的數(shù)學期望為依據,請你預測哪-種方案投資較少?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點.

(Ⅰ)求證:平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面,底面為正方形,,點為正方形內部的一點,且,則直線所成角的余弦值的取值范圍為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案