【題目】某旅游區(qū)每年各個月份接待游客的人數(shù)近似地滿足周期性規(guī)律,因而第個月從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示1月份,是正整數(shù),,. 統(tǒng)計(jì)發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:

每年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;

該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差400人;

2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)為100人,隨后逐月遞增直到8月份達(dá)到最多.

(1)試根據(jù)已知信息,求的表達(dá)式;

(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)在400400以上時,該地區(qū)也進(jìn)入了一年中的旅游旺季,那么,一年中的哪幾個月是該地區(qū)的旅游旺季?請說明理由.

【答案】(1);(2)答案見解析.

【解析】

試題分析:(1)根據(jù)三條規(guī)律,知該函數(shù)為周期為12的周期函數(shù),進(jìn)而求得,利用規(guī)律②可求得三角函數(shù)解析式中的振幅,,則函數(shù)的解析式可得;(2)利用余弦函數(shù)的性質(zhì)根據(jù)題意求得的范圍進(jìn)而求得的范圍,再根據(jù),,進(jìn)而求得的值.

試題解析:(1)根據(jù)三條規(guī)律,知該函數(shù)為周期為12的周期函數(shù),所以.

∵該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差400,2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)為100

,解得.

最少的2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)為100

,即.

(2)令

答:一年中月是該地區(qū)的旅游旺季”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用五種不同顏色給三棱臺的六個頂點(diǎn)染色,要求每個點(diǎn)染一種顏色,且每條棱的兩個端點(diǎn)染不同顏色.則不同的染色方法有___________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某老小區(qū)建成時間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)

年份編號x

1

2

3

4

5

年份

2014

2015

2016

2017

2018

加裝戶數(shù)y

34

95

124

181

216

)若有意向加裝暖氣的戶數(shù)y與年份編號x滿足線性相關(guān)關(guān)系求yx的線性回歸方程并預(yù)測截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;

2018年年底鄭州市民生工程決定對老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式分配名額,競拍方案如下:①截至2018年年底已登記在冊的居民擁有競拍資格;②每戶至多申請一個名額,由戶主在競拍網(wǎng)站上提出申請并給出每平方米的心理期望報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,每平方米的初裝價(jià)格不得超過300元;④申請階段截止后,將所有申請居民的報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則認(rèn)為申請時問在前的居民得到名額,為預(yù)測本次競拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報(bào)競價(jià),得到如圖所示的頻率分布直方圖:

1)求所抽取的居民中擬報(bào)競價(jià)不低于成本價(jià)180元的人數(shù);

2)如果所有符合條件的居民均參與競拍,請你利用樣本估計(jì)總體的思想預(yù)測至少需要報(bào)價(jià)多少元才能獲得名額(結(jié)果取整數(shù))

參考公式對于一組數(shù)據(jù)(x1,y1),(x2y2),(x3,y3),xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具廠生產(chǎn)出一種新型兒童泡沫玩具飛機(jī),為更精確的確定最終售價(jià),該廠采用了多種價(jià)格對該玩具飛機(jī)進(jìn)行了試銷,某銷售點(diǎn)的銷售情況如下表:

單價(jià)(元)

8

9

10

11

12

銷量(架)

40

36

30

24

20

從散點(diǎn)圖可以看出,這些點(diǎn)大致分布在一條直線的附近,變量,有較強(qiáng)的線性相關(guān)性.

(1)求銷量關(guān)于的回歸方程;

(2)若每架該玩具飛機(jī)的成本價(jià)為5元,利用(1)的結(jié)果,預(yù)測每架該玩具飛機(jī)的定價(jià)為多少元時,總利潤最大.(結(jié)果保留一位小數(shù))

(附:,,,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】材料一:2018年,全國逾半省份將從秋季入學(xué)的高一年級開始實(shí)行新的學(xué)業(yè)水平考試和高考制度.所有省級行政區(qū)域均突破文理界限,由學(xué)生跨文理選科,均設(shè) 置“”的考試科目.前一個“3”為必考科目,為統(tǒng)一高考科目語文、數(shù)學(xué)、外語.除個別省級行政區(qū)域仍執(zhí)行教育部委托的分省命題任務(wù)外,絕大部分省級行政區(qū)域均由教育部考試中心統(tǒng)一命題;后一個“3”為高中學(xué)業(yè)水平考試(簡稱“學(xué)考”)選考科目,由各省級行政區(qū)域自主命題.材料二:20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,方案決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實(shí)施高考綜合改革.考生總成績由全國統(tǒng)一高考的語文、數(shù)學(xué)、外語3個科目成績和考生選擇的3科普通高中學(xué)業(yè)水平選擇性考試科目成績組成,滿分為750分.即通常所說的“”模式,所謂“”,即“3”是三門主科,分別是語文、數(shù)學(xué)、外語,這三門科目是必選的.“1”指的是要在物理、歷史里選一門,按原始分計(jì)入成績.“2”指考生要在生物、化學(xué)、思想政治、地理4門中選擇2門.但是這幾門科目不以原始分計(jì)入成績,而是等級賦分.等級賦分指的是把考生的原始成績根據(jù)人數(shù)的比例分為、、、、五個等級,五個等級分別對應(yīng)著相應(yīng)的分?jǐn)?shù)區(qū)間,然后再用公式換算,轉(zhuǎn)換得出分?jǐn)?shù).

1)若按照“”模式選科,求選出的六科中含有“語文,數(shù)學(xué),外語,物理,化學(xué)”的概率.

2)某教育部門為了調(diào)查學(xué)生語數(shù)外三科成績與選科之間的關(guān)系,現(xiàn)從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,滿分450分,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450分;

①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:“此次測試平均成績?yōu)?/span>171分,351分以上共有57人”,問甲能否獲得榮譽(yù)證書,請說明理由;

②考生丙得知他的實(shí)際成績?yōu)?/span>430分,而考生乙告訴考生丙:“這次測試平均成績?yōu)?/span>201分,351分以上共有57人”,請結(jié)合統(tǒng)計(jì)學(xué)知識幫助丙同學(xué)辨別乙同學(xué) 信息的真?zhèn)危?/span>

附:;;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級過濾,使用壽命為十年.如圖所示,兩個一級過濾器采用并聯(lián)安裝,二級過濾器與三級過濾器為串聯(lián)安裝。

其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)。在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨(dú)立),三級濾芯無需更換,若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個元,二級濾芯每個元.若客戶在使用過程中單獨(dú)購買濾芯,則一級濾芯每個元,二級濾芯每個元,F(xiàn)需決策安裝凈水系統(tǒng)的同時購濾芯的數(shù)量,為此參考了根據(jù)套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖是根據(jù)個一級過濾器更換的濾芯個數(shù)制成的柱狀圖,表是根據(jù)個二級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表.

二級濾芯更換頻數(shù)分布表

二級濾芯更換的個數(shù)

頻數(shù)

個一級過濾器更換濾芯的頻率代替個一級過濾器更換濾芯發(fā)生的概率,以個二級過濾器更換濾芯的頻率代替個二級過濾器更換濾芯發(fā)生的概率.

(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為的概率;

(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;

(3)記,分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,以橢圓四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為.

1)求橢圓E的方程;

2)過橢圓E的右焦點(diǎn)作直線E交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,右頂點(diǎn)是,離心率為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(不同于點(diǎn)),若,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案