【題目】已知甲箱中裝有3個(gè)紅球,2個(gè)黑球,乙箱中裝有2個(gè)紅球,3個(gè)黑球,這些球除顏色外完全相同,某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),規(guī)定顧客購(gòu)物1000元以上,可以參與抽獎(jiǎng)一次,設(shè)獎(jiǎng)規(guī)則如下:每次分別從以上兩個(gè)箱子中各隨機(jī)摸出2個(gè)球,共4個(gè)球,若摸出4個(gè)球都是紅球,則獲得一等獎(jiǎng),獎(jiǎng)金300元;摸出的球中有3個(gè)紅球,則獲得二等獎(jiǎng),獎(jiǎng)金200元;摸出的球中有2個(gè)紅球,則獲得三等獎(jiǎng),獎(jiǎng)金100元;其他情況不獲獎(jiǎng),每次摸球結(jié)束后將球放回原箱中.

1)求在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;

2)若3人各參與摸獎(jiǎng)1次,求獲獎(jiǎng)人數(shù)X的數(shù)學(xué)期望;

3)若商場(chǎng)同時(shí)還舉行打9折促銷活動(dòng),顧客只能在兩項(xiàng)促銷活動(dòng)中任選一項(xiàng)參與.假若你購(gòu)買了價(jià)值1200元的商品,那么你選擇參與哪一項(xiàng)活動(dòng)對(duì)你有利?

【答案】1;(2;(3)詳見解答.

【解析】

1)設(shè)“在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)”為事件,利用互斥事件概率計(jì)算公式能求出在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;

2)設(shè)“在1次摸獎(jiǎng)中,獲獎(jiǎng)”為事件,求出,每個(gè)人獲獎(jiǎng)的概率相等,獲獎(jiǎng)人數(shù)服從二項(xiàng)分布,求出可能值的概率,由此求出的分布列,應(yīng)用二項(xiàng)分布期望公式即可求出結(jié)論;

3)求出中獎(jiǎng)的期望,設(shè)中獎(jiǎng)的的金額為,可能值為,求出相應(yīng)的概率,列出分布列,進(jìn)而求出期望,與打9折的優(yōu)惠金額對(duì)比,即可得出結(jié)論.

1)設(shè)“在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)”為事件,

,

所以在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;

(2)設(shè)“在1次摸獎(jiǎng)中,獲獎(jiǎng)”為事件,

則獲得一等獎(jiǎng)的概率為,

獲得三等獎(jiǎng)的概率為

所以,

每個(gè)人摸獎(jiǎng)是相互獨(dú)立,且獲獎(jiǎng)概率相等,

獲獎(jiǎng)人數(shù)服從二項(xiàng)分布,

,

分布列為:

;

3)如果選擇抽獎(jiǎng),設(shè)中獎(jiǎng)的的金額為,

可能值為,

,

,

的分布列為:

,

如果購(gòu)買1200選擇打九折,優(yōu)惠金額為,

選擇打九折更有利.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在6千元的基礎(chǔ)上,按月呈的模型波動(dòng)(x為月份),已知3月份達(dá)到最高價(jià)8千元,7月份價(jià)格最低為4千元,該商品每件的售價(jià)為x為月份),且滿足.

1)分別寫出該商品每件的出廠價(jià)函數(shù)和售價(jià)函數(shù)的解析式;

2)問幾月份的銷售盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,以為圓心的圓記為圓,已知圓上的點(diǎn)與圓上的點(diǎn)之間距離的最大值為21.

1)求圓的標(biāo)準(zhǔn)方程;

2)求過點(diǎn)且與圓相切的直線的方程;

3)已知直線軸不垂直,且與圓,圓都相交,記直線被圓,圓截得的弦長(zhǎng)分別為,.,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB外有一點(diǎn)C,∠ABC=60°,AB=200 km,汽車以80 km/h的速度由A向B行駛,同時(shí)摩托車以50 km/h的速度由B向C行駛,則運(yùn)動(dòng)開始________h后,兩車的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右支上一點(diǎn),分別向圓和圓作切線,切點(diǎn)分別為,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年年初,我國(guó)多個(gè)地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅.私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車車尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)車輛限行的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25

[25,35

[35,45

[4555

[55,65

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[15,25),[2535)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行進(jìn)行追蹤調(diào)查,記選中的4人中不贊成車輛限行的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)約資源和保護(hù)環(huán)境是中國(guó)的基本國(guó)策.某化工企業(yè),積極響應(yīng)國(guó)家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中是指改良工藝的次數(shù).

(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

(2)依據(jù)國(guó)家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).(參考數(shù)據(jù):取

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓柱底面半徑為1,高為,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其距離最短時(shí)在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時(shí)針旋轉(zhuǎn)后,邊與曲線相交于點(diǎn).

1)求曲線的長(zhǎng)度;

2)當(dāng)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案