【題目】如圖,真四棱柱的底面是菱形,,,,E,M,N分別是BC,,的中點(diǎn).
(1)證明:面;
(2)求平面DMN與平面所成銳角的正切值.
【答案】(1)證明見(jiàn)解析.(2)
【解析】
(1)由余弦定理可得,進(jìn)而可得,由正棱柱的幾何特征可得,由線(xiàn)面垂直的判定即可得解;
(2)連接ME,由題意可得四邊形DNME為平行四邊形,DE即為平面DMN與平面的交線(xiàn),由線(xiàn)面垂直的判定可得面,進(jìn)而可得即為平面DMN與平面所成的平面角,即可得解.
(1)證明:∵在菱形ABCD中,,,且E為BC中點(diǎn),
∴,∴即,
又棱柱是直四棱柱,∴平面,∴,
又平面,平面,,
∴面;
(2)連接ME,
∵E,M,N分別是BC,,的中點(diǎn),
∴且,
∴且,∴四邊形DNME為平行四邊形,
從而可知:DE即為面DMN與面的交線(xiàn),
∵,,,∴面,
∴且,
則即為平面DMN與平面所成的平面角,
在中,,
故平面DMN與平面所成銳角的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的焦距是,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)3倍,任作斜率為的直線(xiàn)與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線(xiàn)的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線(xiàn)上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線(xiàn)l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線(xiàn)l被圓C截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“網(wǎng)購(gòu)”已經(jīng)成為我們?nèi)粘I钪械囊徊糠郑车貐^(qū)隨機(jī)調(diào)查了100名男性和100名女性在“雙十一”活動(dòng)中用于網(wǎng)購(gòu)的消費(fèi)金額,數(shù)據(jù)整理如下:
男性消費(fèi)金額頻數(shù)分布表
消費(fèi)金額 (單位:元) | 0~500 | 500~1000 | 1000~1500 | 1500~2000 | 2000~3000 |
人數(shù) | 15 | 15 | 20 | 30 | 20 |
(1)試分別計(jì)算男性、女性在此活動(dòng)中的平均消費(fèi)金額;
(2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過(guò)200元的消費(fèi)稱(chēng)作理性消費(fèi),試問(wèn)是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年春節(jié)期間全國(guó)流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在[1,5)∪[﹣21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m﹣n|>16”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國(guó)”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1組,第2組,第3組,第4組,第5組,第6組,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),當(dāng)時(shí),的最小值為,且對(duì)任意的,不等式恒成立,則實(shí)數(shù)m的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,ACBC,D,E分別是A1B1,BC的中點(diǎn).求證:
(1)平面ACD⊥平面BCC1B1;
(2)B1E∥平面ACD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)C1的參數(shù)方程為(t為參數(shù),0<α<π),曲線(xiàn)C2的參數(shù)方程為(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)C2的極坐標(biāo)方程;
(2)設(shè)曲線(xiàn)C1與曲線(xiàn)C2的交點(diǎn)分別為A,B,M(﹣2,0),求|MA|2+|MB|2的最大值及此時(shí)直線(xiàn)C1的傾斜角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com