【題目】如圖,真四棱柱的底面是菱形,,,E,M,N分別是BC,,的中點(diǎn).

1)證明:;

2)求平面DMN與平面所成銳角的正切值.

【答案】1)證明見(jiàn)解析.(2

【解析】

1)由余弦定理可得,進(jìn)而可得,由正棱柱的幾何特征可得,由線(xiàn)面垂直的判定即可得解;

2)連接ME,由題意可得四邊形DNME為平行四邊形,DE即為平面DMN與平面的交線(xiàn),由線(xiàn)面垂直的判定可得,進(jìn)而可得即為平面DMN與平面所成的平面角,即可得解.

1)證明:∵在菱形ABCD中,,,且EBC中點(diǎn),

,∴,

又棱柱是直四棱柱,∴平面,∴,

平面平面,,

;

2)連接ME

E,M,N分別是BC,,的中點(diǎn),

,

,∴四邊形DNME為平行四邊形,

從而可知:DE即為面DMN與面的交線(xiàn),

,,,∴,

即為平面DMN與平面所成的平面角,

中,,

故平面DMN與平面所成銳角的正切值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的焦距是,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)3倍,任作斜率為的直線(xiàn)與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線(xiàn)的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內(nèi)切圓的圓心在一條定直線(xiàn)上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線(xiàn)l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線(xiàn)l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)購(gòu)已經(jīng)成為我們?nèi)粘I钪械囊徊糠郑车貐^(qū)隨機(jī)調(diào)查了100名男性和100名女性在雙十一活動(dòng)中用于網(wǎng)購(gòu)的消費(fèi)金額,數(shù)據(jù)整理如下:

男性消費(fèi)金額頻數(shù)分布表

消費(fèi)金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數(shù)

15

15

20

30

20

1)試分別計(jì)算男性、女性在此活動(dòng)中的平均消費(fèi)金額;

2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過(guò)200元的消費(fèi)稱(chēng)作理性消費(fèi),試問(wèn)是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年春節(jié)期間全國(guó)流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:

I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;

)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

)在這50個(gè)紅包組成的樣本中,將頻率視為概率.

i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;

ii)隨機(jī)抽取手氣紅包金額在[15)∪[21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|mn|16”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國(guó)”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,34組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為(

A.13,4B.2,3,3C.2,2,4D.1,1,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),的最小值為,且對(duì)任意的,不等式恒成立,則實(shí)數(shù)m的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,ACBC,D,E分別是A1B1,BC的中點(diǎn).求證:

1)平面ACD⊥平面BCC1B1;

2B1E∥平面ACD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)C1的參數(shù)方程為t為參數(shù),0απ),曲線(xiàn)C2的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線(xiàn)C2的極坐標(biāo)方程;

2)設(shè)曲線(xiàn)C1與曲線(xiàn)C2的交點(diǎn)分別為AB,M(﹣20),求|MA|2+|MB|2的最大值及此時(shí)直線(xiàn)C1的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案