【題目】已知函數(shù).

求函數(shù)的單調(diào)遞增區(qū)間;

證明:當(dāng)時(shí) ;

(Ⅲ)確定實(shí)數(shù)的值,使得存在當(dāng)時(shí),恒有.

【答案】(1) (2)見解析(3)

【解析】【試題分析】(I)先求函數(shù)的定義域,然后求導(dǎo)令導(dǎo)數(shù)大于零即可求得函數(shù)的遞增區(qū)間.II構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在時(shí)函數(shù)值小于零,由此證得不等式成立.III由(II)可知時(shí)不存在.當(dāng)時(shí),有,,故也不存在.當(dāng)時(shí),構(gòu)造函數(shù),利用導(dǎo)致證得不等式成立,故.

【試題解析】

, .

解得.

的單調(diào)遞增區(qū)間是.

(Ⅱ)令, .

則有.

當(dāng)時(shí), ,

所以上單調(diào)遞減,

故當(dāng)時(shí), ,即當(dāng)時(shí), .

(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),不存在滿足題意.

當(dāng)時(shí)對(duì)于,,,從而不存在滿足題意.

當(dāng)時(shí),, ,

則有 .

, .

解得, .

當(dāng)時(shí), ,內(nèi)單調(diào)遞增.

從而當(dāng)時(shí) ,,

綜上, 的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于M,N兩點(diǎn),且

求圓C的標(biāo)準(zhǔn)方程;

過點(diǎn)的直線l與圓C交于不同的兩點(diǎn)D,E,若時(shí),求直線l的方程;

已知Q是圓C上任意一點(diǎn),問:在x軸上是否存在兩定點(diǎn)A,B,使得?若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4人去旅游,旅游地點(diǎn)有A,B兩個(gè)地方可以選擇,但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時(shí)去A地,擲出其他的則去B地.
(1)求這4個(gè)人恰好有1個(gè)人去A地的概率;
(2)用X,Y分別表示這4個(gè)人中去A,B兩地的人數(shù),記ξ=XY,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中, 平面 的中點(diǎn).

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點(diǎn),且中點(diǎn), 中點(diǎn).

(1)求證: ;

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D點(diǎn)是AB的中點(diǎn)

(1)求證:BC1∥平面CA1D

(2)求三棱錐B-A1DC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且處取得極值.

(1)求函數(shù)的解析式;

(2)設(shè)函數(shù),是否存在實(shí)數(shù),使得曲線軸有兩個(gè)交點(diǎn),若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)2,,如表所示:

試銷單價(jià)

4

5

6

7

8

9

產(chǎn)品銷量

90

84

83

80

q

68

已知

求表格中q的值;

已知變量x,y具有線性相關(guān)性,試?yán)米钚《朔ㄔ,求產(chǎn)品銷量y關(guān)于試銷單價(jià)x的線性回歸方程參考數(shù)據(jù)

中的回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值記為2,當(dāng)時(shí),則稱為一個(gè)“理想數(shù)據(jù)”試確定銷售單價(jià)分別為4,5,6時(shí)有哪些是“理想數(shù)據(jù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品要了解年廣告費(fèi)(單位:萬元)對(duì)年銷售額(單位:萬元)的影響,對(duì)近4年的年廣告費(fèi)和年銷售額數(shù)據(jù)作了初步整理,得到下面的表格:

用廣告費(fèi)作解釋變量,年銷售額作預(yù)報(bào)變量,若認(rèn)為適宜作為年銷售額關(guān)于年廣告費(fèi)的回歸方程類型,則

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(2)已知商品的年利潤的關(guān)系式為.根據(jù)(1)的結(jié)果,年廣告費(fèi)約為何值時(shí)(小數(shù)點(diǎn)后保留兩位),年利潤的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

.

查看答案和解析>>

同步練習(xí)冊答案