【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時(shí), ;
(Ⅲ)確定實(shí)數(shù)的值,使得存在,當(dāng)時(shí),恒有.
【答案】(1) (2)見解析(3)
【解析】【試題分析】(I)先求函數(shù)的定義域,然后求導(dǎo)令導(dǎo)數(shù)大于零即可求得函數(shù)的遞增區(qū)間.(II)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在時(shí)函數(shù)值小于零,由此證得不等式成立.(III)由(II)可知時(shí)不存在.當(dāng)時(shí),有,則,故也不存在.當(dāng)時(shí),構(gòu)造函數(shù),利用導(dǎo)致證得不等式成立,故.
【試題解析】
(Ⅰ), .
由得解得.
故的單調(diào)遞增區(qū)間是.
(Ⅱ)令, .
則有.
當(dāng)時(shí), ,
所以在上單調(diào)遞減,
故當(dāng)時(shí), ,即當(dāng)時(shí), .
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),不存在滿足題意.
當(dāng)時(shí),對(duì)于,有,則,從而不存在滿足題意.
當(dāng)時(shí),令, ,
則有 .
由得, .
解得, .
當(dāng)時(shí), ,故在內(nèi)單調(diào)遞增.
從而當(dāng)時(shí), ,即,
綜上, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于M,N兩點(diǎn),且.
Ⅰ求圓C的標(biāo)準(zhǔn)方程;
Ⅱ過點(diǎn)的直線l與圓C交于不同的兩點(diǎn)D,E,若時(shí),求直線l的方程;
Ⅲ已知Q是圓C上任意一點(diǎn),問:在x軸上是否存在兩定點(diǎn)A,B,使得?若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4人去旅游,旅游地點(diǎn)有A,B兩個(gè)地方可以選擇,但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時(shí)去A地,擲出其他的則去B地.
(1)求這4個(gè)人恰好有1個(gè)人去A地的概率;
(2)用X,Y分別表示這4個(gè)人中去A,B兩地的人數(shù),記ξ=XY,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知所在的平面, 是的直徑, 是上一點(diǎn),且是中點(diǎn), 為中點(diǎn).
(1)求證: 面;
(2)求證: 面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D點(diǎn)是AB的中點(diǎn)
(1)求證:BC1∥平面CA1D.
(2)求三棱錐B-A1DC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在和處取得極值.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),是否存在實(shí)數(shù),使得曲線與軸有兩個(gè)交點(diǎn),若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)2,,如表所示:
試銷單價(jià)元 | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量件 | 90 | 84 | 83 | 80 | q | 68 |
已知.
求表格中q的值;
已知變量x,y具有線性相關(guān)性,試?yán)米钚《朔ㄔ,求產(chǎn)品銷量y關(guān)于試銷單價(jià)x的線性回歸方程參考數(shù)據(jù);
用中的回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值記為2,,當(dāng)時(shí),則稱為一個(gè)“理想數(shù)據(jù)”試確定銷售單價(jià)分別為4,5,6時(shí)有哪些是“理想數(shù)據(jù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品要了解年廣告費(fèi)(單位:萬元)對(duì)年銷售額(單位:萬元)的影響,對(duì)近4年的年廣告費(fèi)和年銷售額數(shù)據(jù)作了初步整理,得到下面的表格:
用廣告費(fèi)作解釋變量,年銷售額作預(yù)報(bào)變量,若認(rèn)為適宜作為年銷售額關(guān)于年廣告費(fèi)的回歸方程類型,則
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(2)已知商品的年利潤與的關(guān)系式為.根據(jù)(1)的結(jié)果,年廣告費(fèi)約為何值時(shí)(小數(shù)點(diǎn)后保留兩位),年利潤的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為
, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com