(本小題滿分12分)某校舉行環(huán)保知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會,選手累計(jì)答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進(jìn)入決賽,答錯3題者則被淘汰,已知選手甲答題連續(xù)兩次答錯的概率為,(已知甲回答每個問題的正確率相同,并且相互之間沒有影響。)(I)求甲選手回答一個問題的正確率;(Ⅱ)求選手甲可進(jìn)入決賽的概率;(Ⅲ)設(shè)選手甲在初賽中答題的個數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望。

(1)(2)(3)

解析試題分析:解:(1)設(shè)甲選手答對一個問題的正確率為,則
故甲選手答對一個問題的正確率            3分
(Ⅱ)選手甲答了3道題目進(jìn)入決賽的概率為=     4分
選手甲答了4道題目進(jìn)入決賽的概率為      5分
選手甲答了5道題目進(jìn)入決賽的概率為     6分
選手甲可以進(jìn)入決賽的概率        7分
(Ⅲ)可取3,4,5則有            8分
      9分
     10分


3
4
5




          12分
考點(diǎn):獨(dú)立事件的概率和二項(xiàng)分布的運(yùn)用
點(diǎn)評:解決該試題的關(guān)鍵是能理解獨(dú)立事件的概念分情況來求解概率值,同時能結(jié)合獨(dú)立重復(fù)試驗(yàn)的概率公式求解分布列和期望值。屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某國際高端經(jīng)濟(jì)論壇上,前六位發(fā)言的是與會的含有甲、乙的6名中國經(jīng)濟(jì)學(xué)專家,他們的發(fā)言順序通過隨機(jī)抽簽方式?jīng)Q定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國專家數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
袋中有大小相同的三個球,編號分別為1、2和3,從袋中每次取出一個球,若取到的球的編號為偶數(shù),則把該球編號加1(如:取到球的編號為2,改為3)后放回袋中繼續(xù)取球;若取到球的編號為奇數(shù),則取球停止,用表示所有被取球的編號之和.
(Ⅰ)求的概率分布;
(Ⅱ)求的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)
(1)在一個盒子中,放有標(biāo)號為的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標(biāo)號分別記為,求||的最大值,并求事件“||取到最大值”的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在[]上先后取兩個數(shù)分別記為,
求:點(diǎn)在第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
為了解社會對學(xué)校辦學(xué)質(zhì)量的滿意程度,某學(xué)校決定用分層抽樣的方法從高中三個年級的家長委員會中共抽取6人進(jìn)行問卷調(diào)查,已知高一、高二、高三的家長委員會分別有54人、1 8人、36人.
(I)求從三個年級的家長委員會中分別應(yīng)抽的家長人數(shù);
(Ⅱ)若從抽得的6人中隨機(jī)抽取2人進(jìn)行訓(xùn)查結(jié)果的對比,求這2人中至少有一人是高三學(xué)生家長的慨率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某項(xiàng)計(jì)算機(jī)考試按科目A、科目B依次進(jìn)行,只有大拿感科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只允許有一次補(bǔ)考機(jī)會,兩個科目均合格方快獲得證書,現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為,假設(shè)各次考試合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得證書的概率;
(2)在這次考試過程中,假設(shè)他不放棄所有的考試機(jī)會,記他參加考試的次數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某機(jī)構(gòu)向民間招募防爆犬,首先進(jìn)行入圍測試,計(jì)劃考察三個項(xiàng)目:體能,嗅覺和反應(yīng).這三個項(xiàng)目中只要有兩個通過測試,就可以入圍.某訓(xùn)犬基地有4只優(yōu)質(zhì)犬參加測試,已知它們通過體能測試的概率都是1/3,通過嗅覺測試的概率都是1/3,通過反應(yīng)測試的概率都是1/2.
求(1)每只優(yōu)質(zhì)犬能夠入圍的概率;
(2)若每入圍1只犬給基地記10分,設(shè)基地的得分為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從集合的所有非空子集中,等可能地取出一個.
①記性質(zhì):集合中的所有元素之和為10,求所取出的非空子集滿足性質(zhì)的概率;
②記所取出的非空子集的元素個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案