已知橢圓)的右焦點,右頂點,右準線

(1)求橢圓的標準方程;
(2)動直線與橢圓有且只有一個交點,且與右準線相交于點,試探究在平面直角坐標系內(nèi)是否存在點,使得以為直徑的圓恒過定點?若存在,求出點坐標;若不存在,說明理由.
(1);(2).

試題分析:(1)利用橢圓的右準線方程為,聯(lián)立方程組求得、,從而得出橢圓的方程;(2)聯(lián)立方程組消去得到關于的一元二次方程,利用判別式,得出,由橢圓的對稱性知,妨設點,利用推出,又聯(lián)立程組可求得的值.
試題解析:(1)由題意,,,,由.
橢圓C的標準方程為.                                 5分
(2)由得:,
,即,
,,即.    8分
假設存在點滿足題意,則由橢圓的對稱性知,點應在軸上,不妨設點.
,,,若以為直徑的圓恒過定點,
+=恒成立,
,
.                                                            12分
存在點適合題意,點與右焦點重合,其坐標為(1,0).           13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在軸上方有一段曲線弧,其端點軸上(但不屬于),對上任一點及點,,滿足:.直線分別交直線,兩點.

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點

(Ⅰ)設直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當點運動時,以為直徑的圓是否經(jīng)過某定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點F1,F2,點P是兩曲線的一個公共點,又分別是兩曲線的離心率,若PF1PF2,則的最小值為(  )
A.B.4 C.D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等邊△ABC中,D、E分別是CA、CB的中點,以A、B為焦點且過D、E的橢圓和雙曲線的離心率分別為、,則下列關于、的關系式不正確的是(  )
A.       B.      C.         D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點分別為,弦AB過,若的內(nèi)切圓周長為,A,B兩點的坐標分別為,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點(3,4)在橢圓上,則以點為頂點的橢圓的內(nèi)接矩形的面積是( 。
A.12B.24
C.48D.與的值有關

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1(-c, 0), F2(c, 0)是橢圓(a>b>0)的兩個焦點,P是以|F1F2|為直徑的圓與橢圓的一個交點,且∠PF1F2=5∠PF2F1,則該橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上一點M到焦點F1的距離為2,N是MF1的中點.則|ON|等于(    )
A.2B.4C.8D.

查看答案和解析>>

同步練習冊答案