【題目】下列命題中正確的是( )
A.是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面
B.已知為空間的一個(gè)基底,若,則也是空間的基底
C.若直線的方向向量為,平面的法向量為,則直線
D.若直線的方向向量為,平面的法向量為,則直線與平面所成角的正弦值為
【答案】ABD
【解析】
不共面的三個(gè)非零向量可以構(gòu)成空間向量的一個(gè)基底,由此可判斷A、B,若直線的方向向量與平面的法向量垂直,則線面平行,可判斷C,直線的方向向量與平面的法向量夾角的余弦值的絕對(duì)值與該直線與此平面所成角的正弦值相等,由此可判斷D.
對(duì)于A,是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面,則共面,故A對(duì);
對(duì)于B,已知為空間的一個(gè)基底,則不共面,若,則也不共面,則也是空間的基底,故B對(duì);
對(duì)于C,因?yàn)?/span>,則,若,則,但選項(xiàng)中沒有條件,有可能會(huì)出現(xiàn),故C錯(cuò);
對(duì)于D,∵,則則直線與平面所成角的正弦值為,故D對(duì);
故選:ABD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為,為等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于,兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織的最新研究報(bào)告顯示,目前中國近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計(jì)戶外暴露時(shí)間(單位:小時(shí))與近視發(fā)病率的關(guān)系,對(duì)某中學(xué)一年級(jí)200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):
每周累積戶外暴露時(shí)間(單位:小時(shí)) | 不少于28小時(shí) | ||||
近視人數(shù) | 21 | 39 | 37 | 2 | 1 |
不近視人數(shù) | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計(jì)戶外暴露時(shí)間不少于28小時(shí)的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;
(2)若每周累計(jì)戶外暴露時(shí)間少于14個(gè)小時(shí)被認(rèn)證為“不足夠的戶外暴露時(shí)間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時(shí)間與近視有關(guān)系?
近視 | 不近視 | |
足夠的戶外暴露時(shí)間 | ||
不足夠的戶外暴露時(shí)間 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線恒過定點(diǎn),過點(diǎn)引圓的兩條切線,設(shè)切點(diǎn)分別為,.
(1)求直線的一般式方程;
(2)求四邊形的外接圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比它到軸的距離大.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)(為常數(shù)),過點(diǎn)作斜率分別為的兩條直線與,交曲線于兩點(diǎn),交曲線于兩點(diǎn),點(diǎn)分別是線段的中點(diǎn),若,求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓兩焦點(diǎn)坐標(biāo)為,,橢圓上的點(diǎn)到右焦點(diǎn)距離最小值為.
(1)求橢圓的方程;
(2)設(shè)斜率為-2的直線交曲線于、兩點(diǎn),求線段的中點(diǎn)的軌跡方程;
(3)設(shè)經(jīng)過點(diǎn)的直線與曲線相交所得的弦為線段,求的面積的最大值(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:①任意兩條直線都可以確定一個(gè)平面;②若兩個(gè)平面有3個(gè)不同的公共點(diǎn),則這兩個(gè)平面重合;③直線a,b,c,若a與b共面,b與c共面,則a與c共面;④若直線l上有一點(diǎn)在平面α外,則l在平面α外.其中錯(cuò)誤命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com