(12分)已知過(guò)點(diǎn)的動(dòng)直線與拋物線相交于兩點(diǎn),當(dāng)直線的斜率是時(shí),
(1)求拋物線的方程;(5分)
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍。(7分)
(1)(2)

試題分析:(1)設(shè),當(dāng)直線的斜率是時(shí),的方程為
,由
,又,由這三個(gè)表達(dá)式及
,則拋物線的方程為
(2)設(shè)的中點(diǎn)坐標(biāo)為

線段的中垂線方程為
,線段的中垂線在軸上的截距為:
,由

點(diǎn)評(píng):本題中向量轉(zhuǎn)化為點(diǎn)的坐標(biāo),用縱坐標(biāo)y值比較簡(jiǎn)單
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),;則的實(shí)軸長(zhǎng)為_(kāi)___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若=0,則||+||+||=___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點(diǎn)在軸的異側(cè),端點(diǎn)的橫坐標(biāo)分別相等,縱坐標(biāo)分別同號(hào).

(Ⅰ)若弦所在直線斜率為,且弦的中點(diǎn)的橫坐標(biāo)為,求直線的方程;
(Ⅱ)若弦過(guò)定點(diǎn),試探究弦是否也必過(guò)某個(gè)定點(diǎn). 若有,請(qǐng)證明;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
中心在原點(diǎn),長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的和為9,離心率為0.6,求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左、右兩焦點(diǎn)分別為,點(diǎn)在橢圓上,
,,則橢圓的離心率等于  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到軸的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線點(diǎn),且
,,
的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)雙曲線C與橢圓有相同的焦點(diǎn),直線y=的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過(guò)點(diǎn)(0,4)的直線,交雙曲線于A,B兩點(diǎn),交x軸于點(diǎn)(點(diǎn)與的頂點(diǎn)不重合)。當(dāng) =,且時(shí),求點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是雙曲線的兩焦點(diǎn),點(diǎn)在該雙曲線上,且是等腰三角形,則的周長(zhǎng)為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案