精英家教網 > 高中數學 > 題目詳情

【題目】從某大學一年級女生中,選取身高分別是150cm、155cm、160cm、165cm、170cm的學生各一名,其身高和體重數據如表所示:

身高/cm(x)

150

155

160

165

170

體重/kg(y)

43

46

49

51

56


(1)求y關于x的線性回歸方程;
(2)利用(1)中的回歸方程,計算身高為168cm時,體重的估計值 為多少?
參考公式:線性回歸方程 = x+ ,其中 = = , =

【答案】
(1)解:由已知數據,可得 , ,

(165﹣160)(51﹣49)+(170﹣160)(56﹣49)=155,

,

,

∴y關于x的線性回歸方程為y=0.62x﹣50.2


(2)解:由(1)知,當x=168時, (kg)

因此,當身高為168cm時,體重的估計值 為53.96kg


【解析】(1)先求出橫標和縱標的平均數,得到這組數據的樣本中心點,利用最小二乘法求出線性回歸方程的系數,代入樣本中心點求出a的值,寫出線性回歸方程;(2)由回歸直線方程,計算當x=168cm時,即可求得體重的估計值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某通訊公司需要在三角形地帶OAC區(qū)域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區(qū)域BOC內,乙中轉站建在區(qū)域AOB內.分界線OB固定,且OB=(1+ )百米,邊界線AC始終過點B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°.設OA=x(3≤x≤6)百米,OC=y百米.

(1)試將y表示成x的函數,并求出函數y的解析式;
(2)當x取何值時?整個中轉站的占地面積SOAC最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017南通一模(本題滿分16分)如圖,某機械廠要將長6m,寬2m的長方形鐵皮ABCD進行裁剪。已知點F為AD的中點,點E在邊BC上,裁剪時先將四邊形CDFE沿直線EF翻折到MNFE處(點C,D分別落在直線BC下方點M,N處,FN交邊BC于點P),再沿直線PE裁剪。

(1)當時,試判斷四邊形MNPE的形狀,并求其面積;

(2)若使裁剪得到的四邊形MNPE面積最大,請給出裁剪方案,并說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017遼寧鞍山市最后一次模】如圖所示,在三棱錐,側面, 是全等的直角三角形, 是公共的斜邊且, ,另一側面是正三角形.

(1)求證: ;

(2)若在線段上存在一點,使與平面,試求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知Sn為等差數列{an}的前n項和,且a1=﹣15,S5=﹣55.
(1)求數列{an}的通項公式;
(2)若不等式Sn>t對于任意的n∈N*恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017四川瀘州四診】如圖,平面平面,四邊形是菱形, .

(1)求證: ;

(2)若,且直線與平面所成角為,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 【2017江西4月質檢】如圖,四棱錐中,側面底面, , , , ,點在棱上,且,點在棱上,且平面.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(1)求拋物線C的方程;
(2)設直線l為拋物線C的切線,且l∥MN,P為l上一點,求 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一個口袋有m個白球,n個黑球(m,n ,n 2),這些球除顏色外全部相同。現將口袋中的球隨機的逐個取出,并放入如圖所示的編號為1,2,3,……,m+n的抽屜內,其中第k次取球放入編號為k的抽屜(k=1,2,3,……,m+n).

(1)試求編號為2的抽屜內放的是黑球的概率p;

(2)隨機變量x表示最后一個取出的黑球所在抽屜編號的倒數,E(x)是x的數學期望,證明

查看答案和解析>>

同步練習冊答案