【題目】已知正項數(shù)列{an}的前n項和為Sn , 且2Sn=(an﹣1)(an+2),
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)列{ }的前n項和為Tn , 試比較Tn 的大。

【答案】
(1)解:當(dāng)n=1時,2a1=2S1=(a1﹣1)(a1+2),

∵a1>0,∴a1=2.

n=2時,2S2=(a2﹣1)(a2+2)=2(2+a2),

解得a2=3.

當(dāng)n≥2時,2an=2(Sn﹣Sn1)=an2﹣an12+an﹣an1,

∴(an+an1)(an﹣an1﹣1)=0,

∵an+an1>0,∴an﹣an1=1,

∴數(shù)列{an}是以2為首項,1為公差的等差數(shù)列,

∴an=n+1;


(2)解:∵ = = ,

∴Tn= + +…+ = ﹣2,

Tn = ﹣2﹣

= ,

當(dāng)n<17且n為正整數(shù)時,

<0,∴Tn

當(dāng)n=17時,

=0,∴Tn= ;

當(dāng)n>17且n為正整數(shù)時,

>0,∴Tn


【解析】(1)運用數(shù)列的遞推式:當(dāng)n=1時,a1=S1 , 當(dāng)n≥2時,an=Sn﹣Sn1 . 可得an=n+1;(2)求得 = = ,運用裂項相消求和可得Tn , 再由作差法,討論n的范圍,即可得到大小關(guān)系.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈ 時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,B=60°,AC= ,則AB+2BC的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)求函數(shù)f(x)= (x<﹣1)的最大值,并求相應(yīng)的x的值.
(2)已知正數(shù)a,b滿足2a2+3b2=9,求a 的最大值并求此時a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn=2n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 設(shè)an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn , bn+1)在直線y=x+2上.
(1)求an , bn;
(2)若數(shù)列{bn}的前n項和為Bn , 比較 + +…+ 與1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68


(1)求回歸直線方程 = x+ ,其中 =﹣20, =
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校一個生物興趣小組對學(xué)校的人工湖中養(yǎng)殖的某種魚類進(jìn)行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8


(1)在給出的坐標(biāo)系中,畫出關(guān)于x,y兩個相關(guān)變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程
(3)預(yù)測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式: = ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式ax2﹣ax+1>0對x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案