【題目】.已知函數(shù).

(1)求過(guò)點(diǎn)圖象的切線(xiàn)方程;

(2)若函數(shù)存在兩個(gè)極值點(diǎn), ,求的取值范圍;

(3)當(dāng)時(shí),均有恒成立,求的取值范圍.

【答案】(1) (2) (3)

【解析】試題分析:(1設(shè)切點(diǎn)坐標(biāo)為,則切線(xiàn)方程為 ,根據(jù)點(diǎn)坐標(biāo),即可求出,從而得到切線(xiàn)方程;(2)對(duì)求導(dǎo),令,要使存在兩個(gè)極值點(diǎn) ,則方程有兩個(gè)不相等的正數(shù)根,從而只需滿(mǎn)足即可;(3)由上恒成立可得上恒成立,令,求出的單調(diào)性,可得出的最大值,即可求得的取值范圍.

試題解析:(1)由題意得,函數(shù)的定義域?yàn)?/span>,

設(shè)切點(diǎn)坐標(biāo)為,則切線(xiàn)方程為

把點(diǎn)代入切線(xiàn)方程,得: ,

過(guò)點(diǎn)的切線(xiàn)方程為:

(2)∵

要使存在兩個(gè)極值點(diǎn), ,則方程有兩個(gè)不相等的正數(shù)根.

.

故只需滿(mǎn)足即可

解得:

(3)由于上恒成立.

上恒成立.

當(dāng)時(shí),

,則

上單調(diào)遞增

∴存在便得,即

故當(dāng)時(shí), ,此時(shí)

當(dāng)時(shí), 此時(shí).

故函數(shù)上遞增,在上遞減

從而:

,

在上單調(diào)遞增,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點(diǎn)為F1(–1、0),

F21,0).過(guò)F2x軸的垂線(xiàn)l,在x軸的上方,l與圓F2:交于點(diǎn)A,與橢圓C交于點(diǎn)D.連結(jié)AF1并延長(zhǎng)交圓F2于點(diǎn)B,連結(jié)BF2交橢圓C于點(diǎn)E,連結(jié)DF1.已知DF1=

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,且過(guò)點(diǎn).直線(xiàn)交于,兩點(diǎn),點(diǎn)的左焦點(diǎn).

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)且不與軸重合,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值.

)設(shè),當(dāng)時(shí),函數(shù)的圖象恒不在直線(xiàn)的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是直角梯形,其中,,.點(diǎn)的中點(diǎn),將沿折起如圖,使得平面.點(diǎn)、分別是線(xiàn)段的中點(diǎn).

(1)求證:;

(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:

所成角的正切值是

;

;

④平面平面;

⑤直線(xiàn)與平面所成角為30°.

其中正確的有________.(填寫(xiě)你認(rèn)為正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)的圖象關(guān)于軸對(duì)稱(chēng),頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)在拋物線(xiàn)上.

(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

(2)設(shè)直線(xiàn)的方程為,若直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),且以為直徑的圓過(guò)點(diǎn)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為正方形,且底面過(guò)的平面與側(cè)面的交線(xiàn)為,且滿(mǎn)足表示的面積.

1)證明: 平面;

(2)當(dāng)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)函數(shù)有極值時(shí),若對(duì) 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案