已知橢圓內(nèi)有圓,如果圓的切線與橢圓交A、B兩點(diǎn),且滿足(其中為坐標(biāo)原點(diǎn)).
(1)求證:為定值;
(2)若達(dá)到最小值,求此時(shí)的橢圓方程;
(3)在滿足條件(2)的橢圓上是否存在點(diǎn)P,使得從P向圓所引的兩條切線互相垂直,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,說明理由.
解:(1)方法1:設(shè)圓的切線的切點(diǎn)坐標(biāo)為,則切線的方程為,與橢圓方程聯(lián)立消去得:
設(shè),因,所以,又,,所以.(*)
代入(*)得
,
,因此,所以(定值).
方法2:設(shè)切線的方程為,則有
,
所以.
,所以,即
(定值).
(2)因,
所以
當(dāng)時(shí)取到最小值,此時(shí)橢圓的方程為
(3)如果存在滿足條件的點(diǎn)P,則向圓引兩條切線,切點(diǎn)分別為M、N,連結(jié)OM、ON,則,如果,則四邊形OMPN為正方形,所以,因?yàn)闄E圓上到中心最近的點(diǎn)為短軸的端點(diǎn),距離為,故存在四個(gè)點(diǎn)滿足條件,其坐標(biāo)為,即
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r>0)有一個(gè)公共點(diǎn),且在A處兩曲線的切線為同一直線l.
(Ⅰ)求r;
(Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)平面內(nèi)兩定點(diǎn),直線PF1PF2相交于點(diǎn)P,且它們的斜率之積為定值;
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C1的方程;
(Ⅱ)設(shè)M(0,),N為拋物線C2上的一動(dòng)點(diǎn),過點(diǎn)N作拋物線C2的切線交曲線C1P、Q兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體P-ABC中,M為ABC內(nèi)(含邊界)一動(dòng)點(diǎn),且到三個(gè)側(cè)面PAB,PBC,PCA的距離成等差數(shù)列,則點(diǎn)M的軌跡是(  )
A.一條線段B.橢圓的一部分
C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖:O方程為,點(diǎn)P在圓上,點(diǎn)Dx軸上,點(diǎn)MDP延長(zhǎng)線上,Oy軸于點(diǎn)N,.且
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè),若過F1的直線交(I)中曲線CA、B兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

△ABC中,A(-2,0),B(2,0),則滿足△ABC的周長(zhǎng)為8的點(diǎn)C的軌跡方程為
_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓:,過坐標(biāo)原點(diǎn)O作兩條互相垂直的射線,與橢圓分別交于A,B兩點(diǎn).
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線的漸近線與圓相切,則=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
在△ABC中,頂點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)D,E滿足:
;②||=|=|③共線.
(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;
(Ⅱ) 若斜率為1直線l與動(dòng)點(diǎn)C的軌跡交于M,N兩點(diǎn),且·=0,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案