.(本小題滿分12分)
在△ABC中,頂點A(-1,0),B(1,0),動點D,E滿足:
①
;②|
|=
|
|=
|
|③
與
共線.
(Ⅰ)求△ABC頂點C的軌跡方程;
(Ⅱ) 若斜率為1直線
l與動點C的軌跡交于M,N兩點,且
·
=0,求直線
l的方程.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
,討論方程
所表示的圓錐曲線類型,并求其焦點坐標
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(21) (本小題滿分15分)
直線
分拋物線
與
軸所圍成圖形為面積相等的兩個部分,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
內(nèi)有圓
,如果圓的切線與橢圓交A、B兩點,且滿足
(其中
為坐標原點).
(1)求證:
為定值;
(2)若
達到最小值,求此時的橢圓方程;
(3)在滿足條件(2)的橢圓上是否存在點P,使得從P向圓所引的兩條切線互相垂直,如果存在,求出點的坐標,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的左焦點
,若橢圓上存在一點
,滿足以橢圓短軸為直徑的圓與線段
相切于線段
的中點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知兩點
及橢圓
:
,過點
作斜率為
的直線
交橢圓
于
兩點,設線段
的中點為
,連結
,試問當
為何值時,直線
過橢圓
的頂點?
(Ⅲ) 過坐標原點
的直線交橢圓
:
于
、
兩點,其中
在第一象限,過
作
軸的垂線,垂足為
,連結
并延長交橢圓
于
,求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為2,
(1)試
求橢圓
的方程;
(2)若斜率為
的直線
與橢圓
交于
、
兩點,點
為橢圓
上一點,記直線
的斜率為
,直線
的斜率為
,試問:
是否為定值?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
:
,焦點為
,其準線與
軸交于點
;橢圓
:分別以
為左、右焦點,其離心率
;且拋物線
和橢圓
的一個交點記為
.
(1)當
時,求橢圓
的標準方程;
(2)在(1)的條件下,若直線
經(jīng)過橢圓
的右焦點
,且
與拋物線
相交于
兩點,若弦長
等于
的周長,求直線
的方程
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
圓錐曲線
的準線方程是
查看答案和解析>>