在直三棱柱中, ,,求:
(1)異面直線與所成角的大;
(2)四棱錐的體積.
(1);(2).
解析試題分析:(1)求異面直線所成的角,就是根據(jù)定義作出這個角,當(dāng)然異面直線的平移,一般是過其中一條上的一點作另一條的平行線,特別是在基本幾何體中,要充分利用幾何體中的平行關(guān)系尋找平行線,然后在三角形中求解,本題中∥,就是我們要求的角(或其補角);(2)一種方法就是直接利用體積公式,四棱錐的底面是矩形,下面要確定高,即找到底面的垂線,由于是直棱柱,因此側(cè)棱與底面垂直,從而,題中又有,即,從而,故就是底面的垂線,也即高.
試題解析:(1)因為,所以(或其補角)是異面直線與所成角. 1分
因為,,所以平面,所以. 3分
在中,,所以 5分
所以異面直線與所成角的大小為. 6分
(2)因為
所以平面 9分
則 12分
考點:(1)異面直線所成的角;(2)求體積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形所在的平面和平面互相垂直,等腰梯形中,∥,=2,,,,分別為,的中點,為底面的重心.
(1)求證:平面平面;
(2)求證: ∥平面;
(3)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,和都是以為斜邊的等腰直角三角形,分別是的中點.
(1)證明:平面//平面;
(2)證明:;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)求三棱錐D-B1C1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
請您設(shè)計一個帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示)。試問當(dāng)帳篷的頂點O到底面中心O1的距離為多少時,帳篷的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面是菱形,,,是的中點,點在側(cè)棱上.
(1)求證:⊥平面;
(2)若是的中點,求證://平面;
(3)若,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三棱柱ABC-A'B'C'中,D是BC的中點,AA'=AB=2
(1)求證:ADB'D;
(2)求三棱錐A'-AB'D的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com