精英家教網 > 高中數學 > 題目詳情
如圖1,在正三角形ABC中,D、E、F分別為各邊的中點,G、H、I、J分別為AF、AD、BE、DE的中點.將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的度數為(   )

A.90°            B.60°            C.45°         D.0°
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分別是線段A1A,BC上的點.
(1) 若A1E=5,BF=10,求證:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱錐A1AB1F的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本小題滿分12分)
如圖,已知四棱錐PABCD的底面是直角梯形,∠ABC=∠BCD=90o,ABBCPBPC=2CD=2,側面PBC⊥底面ABCDOBC的中點,AOBDE.

(1)求證:PABD;
(2)求二面角PDCB的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,四面體ABCD中,O是BD的中點,△ABD和△BCD均為等邊三角形,AB=2,AC=

(1)求證:AO⊥平面BCD;
(2)求二面角A—BC—D的余弦值;
(3)求點O到平面ACD的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直四棱柱ABCD—A1B1C1D1中,已知底面四邊形
ABCD是邊長為3的菱形,且DB=3,A1A=2,點E
在線段BC上,點F在線段D1C1上,且BE=D1F=1.
(1)求證:直線EF∥平面B1D1DB;
(2)求二面角F—DB—C的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.在棱長為2的正方體中,動點內,且到直線的距離之和等于,則的面積最大值是  (   )
A.B.1C.2D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本小題滿分12分)
四棱柱ABCD—A1B1C1D1的底面ABCD是正方形,側棱底面ABCD,E、F分別是C1D1,C1B1的中點,G為CC1上任一點,EC與底面ABCD所成角的正切值是4。

(Ⅰ)確定點G的位置,使平面CEF,并說明理由;
(Ⅱ)求二面角F—CE—C1的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)
在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,
 
(Ⅰ)求證:平面面DEF;
(Ⅱ)求二面角A—BF—E的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

本題滿分10分)
如圖,已知求證:al.

查看答案和解析>>

同步練習冊答案