【題目】已知橢圓E: ,不經(jīng)過(guò)原點(diǎn)O的直線l:y=kx+m(k>0)與橢圓E相交于不同的兩點(diǎn)A、B,直線OA,AB,OB的斜率依次構(gòu)成等比數(shù)列.
(Ⅰ)求a,b,k的關(guān)系式;
(Ⅱ)若離心率 且 ,當(dāng)m為何值時(shí),橢圓的焦距取得最小值?
【答案】解:(Ⅰ)設(shè)A(x1 , y1),B(x2 , y2), 由直線OA,AB,OB的斜率依次構(gòu)成等比數(shù)列,
得 ,
由 ,可得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,
故△=(2a2km)2﹣4(b2+a2k2)(a2m2﹣a2b2)>0,
即b2﹣m2+a2k2>0,
又x1+x2=﹣ ,x1x2= ,
則 ,
即 ,
即 ,
又直線不經(jīng)過(guò)原點(diǎn),所以m≠0,
所以b2=a2k2即b=ak;
(Ⅱ)若 ,則 , ,
又k>0,得 ,
則x1+x2=﹣ =﹣ m,x1x2= = m2﹣2c2 ,
|AB|= =
= ,
化簡(jiǎn)得 (△>0恒成立),
當(dāng)
【解析】(Ⅰ)設(shè)A(x1 , y1),B(x2 , y2),運(yùn)用等比數(shù)列的中項(xiàng)的性質(zhì),以及聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理,化簡(jiǎn)整理,即可得到b=ak;(Ⅱ)運(yùn)用離心率公式,可得斜率k,再由弦長(zhǎng)公式,結(jié)合條件,運(yùn)用基本不等式即可得到所求最值,以及m的取值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐P﹣ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時(shí),tanθ的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A{x| ≥0},B={x|x2﹣2x﹣3<0},C={x|x2﹣(2a+1)x+a(a+1)<0}.
(1)求集合A,B及A∪B;
(2)若C(A∩B),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,在區(qū)間(﹣∞,0)上是增函數(shù)的是( )
A.
B.y=|x﹣1|
C.y=x2﹣4x+8
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C與x軸相切,圓心C在射線3x﹣y=0(x>0)上,直線x﹣y=0被圓C截得的弦長(zhǎng)為2
(1)求圓C標(biāo)準(zhǔn)方程;
(2)若點(diǎn)Q在直線l1:x+y+1=0上,經(jīng)過(guò)點(diǎn)Q直線l2與圓C相切于p點(diǎn),求|QP|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), , ,且的最小值為.
(1)求的值;
(2)若不等式對(duì)任意恒成立,其中是自然對(duì)數(shù)的底數(shù),求的取值范圍;
(3)設(shè)曲線與曲線交于點(diǎn),且兩曲線在點(diǎn)處的切線分別為, .試判斷, 與軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當(dāng)t=4,x∈[1,2]時(shí)F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當(dāng)0<a<1,x∈[1,2]時(shí),有f(x)≥g(x)恒成立,求實(shí)數(shù)t的取值范圍.
(備注:函數(shù)y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求b的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在區(qū)間上任取兩個(gè)實(shí)數(shù),則函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn)的概率是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com