【題目】已知函數(shù)的導(dǎo)數(shù).證明:

1在區(qū)間存在唯一極大值點;

2有且僅有2個零點.

【答案】1)見解析;(2)見解析

【解析】

1)求得導(dǎo)函數(shù)后,可判斷出導(dǎo)函數(shù)在上單調(diào)遞減,根據(jù)零點存在定理可判斷出,使得,進而得到導(dǎo)函數(shù)在上的單調(diào)性,從而可證得結(jié)論;(2)由(1)的結(jié)論可知上的唯一零點;當時,首先可判斷出在上無零點,再利用零點存在定理得到上的單調(diào)性,可知,不存在零點;當時,利用零點存在定理和單調(diào)性可判斷出存在唯一一個零點;當,可證得;綜合上述情況可證得結(jié)論.

1)由題意知:定義域為:

,

,

上單調(diào)遞減,上單調(diào)遞減

上單調(diào)遞減

,

,使得

時,;時,

上單調(diào)遞增;在上單調(diào)遞減

唯一的極大值點

即:在區(qū)間上存在唯一的極大值點.

2)由(1)知:,

①當時,由(1)可知上單調(diào)遞增

上單調(diào)遞減

上的唯一零點

②當時,上單調(diào)遞增,在上單調(diào)遞減

上單調(diào)遞增,此時,不存在零點

,使得

上單調(diào)遞增,在上單調(diào)遞減

上恒成立,此時不存在零點

③當時,單調(diào)遞減,單調(diào)遞減

上單調(diào)遞減

,

,又上單調(diào)遞減

上存在唯一零點

④當時,,

上不存在零點

綜上所述:有且僅有個零點

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,,G的重心,過點G作三棱錐的一個截面,使截面平行于直線PBAC,則截面的周長為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)《人民網(wǎng)》報道,“美國國家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了.衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.”據(jù)統(tǒng)計,中國新增綠化面積的42%來自于植樹造林,下表是中國十個地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)

單位:公頃

造林方式

地區(qū)

造林總面積

人工造林

飛播造林

新封山育林

退化林修復(fù)

人工更新

內(nèi)蒙

618484

311052

74094

136006

90382

6950

河北

583361

345625

33333

135107

65653

3643

河南

149002

97647

13429

22417

15376

133

重慶

226333

100600

62400

63333

陜西

297642

33602

63865

16067

甘肅

325580

260144

57438

7998

新疆

263903

118105

6264

126647

10796

2091

青海

178414

16051

159734

2629

寧夏

91531

58960

22938

8298

1335

北京

19064

10012

4000

3999

1053

(I)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);

(Ⅱ)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)人工造林面積占造林總面積的比值超過的概率是多少?

(Ⅲ)在這十個地區(qū)中,從新封山育林面積超過五萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,為橢圓上不與左右頂點重合的任意一點,,分別為的內(nèi)心、重心,當軸時,橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中Mp及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,的中點,,,將(圖)沿直線折起,使(如圖.

1)求證:;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在極坐標系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當時,求l的極坐標方程;

2)當MC上運動且P在線段OM上時,求P點軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,為直線上的動點,過的兩條切線,切點分別為.

(1)證明:直線過定點:

(2)若以為圓心的圓與直線相切,且切點為線段的中點,求該圓的方程.

查看答案和解析>>

同步練習冊答案