(本小題滿分12分)已知焦點為的橢圓經(jīng)過點, 直線過點與橢圓交于兩點, 其中為坐標原點.
(1) 求橢圓的方程;  (2) 求的范圍; 
(3) 若與向量共線, 求的值及的外接圓方程.
(1),所以橢圓的方程是,聯(lián)立直線方程,化簡為
設A(),B()
=  (#) 令=m則

當K不存在時,,則=
綜上,
(2),

由韋達定理知 代入(#)得
時,A,O,B共線,不存在外接圓
時,,外接圓直徑為AB,圓心為
, 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點分別為、,離心率,右準線方程為
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題10分)
當m取何值時,直線L:y=x+m與橢圓9x2+16y2=144相切、相交、相離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
、分別是橢圓的左右焦點。
(1)設橢圓上點到兩點、距離和等于,寫出橢圓的方程和焦點坐標;
(2)設是(1)中所得橢圓上的動點,求線段的中的軌跡方程;
(3)設點是橢圓上的任意一點,過原點的直線與橢圓相交于,兩點,當直線 , 的斜率都存在,并記為, ,試探究的值是否與點及直有關.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左右焦點為F1,F(xiàn)2,點P-在橢圓上,若P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點,則點P到x軸的距離是          (   )
A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的右焦點與拋物線的焦點重合,則
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


三、解答題(本大題共有3個小題,共40分。解答應寫出文字說明、演算步驟或證明過程。)
13. (本小題滿分13分)
已知命題:方程表示焦點在軸上的橢圓,命題:關于x的方程無實根,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在軸上的橢圓的離心率為,則=                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在軸上的橢圓的離心率為,則m="            "

查看答案和解析>>

同步練習冊答案