設(shè)點(diǎn)F是拋物線L:y2=4x的焦點(diǎn),P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*
(1)若拋物線L上三點(diǎn)P1、P2、P3的橫坐標(biāo)之和等于4,求的值;
(2)當(dāng)n≥3時(shí),若,求證:;
(3)若將題設(shè)中的拋物線方程y2=4x推廣為y2=2px(p>0),請(qǐng)類比小題(2),寫出一個(gè)一般化的命題及其逆命題,并判斷其逆命題的真假.若是真命題,請(qǐng)予以證明;若是假命題,請(qǐng)說(shuō)明理由.
【答案】分析:(1)拋物線l的焦點(diǎn)為F(1,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),利用拋物線的定義,結(jié)合x1+x2+x3=4,可得結(jié)論;
(2)設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過(guò)P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn,利用拋物線的定義可得x1+x2+x3+…+xn=n,從而可證=2n
(3)當(dāng)n≥3時(shí),若,求證:
逆命題:當(dāng)n≥3時(shí),“若,則
取n=4時(shí),拋物線l的焦點(diǎn)為F(,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),分別過(guò)P1、P2、P3,P4作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,Q4,利用拋物線的定義,可得x1+x2+x3+x4=2p,從而可得結(jié)論.
解答:解:(1)拋物線l的焦點(diǎn)為F(1,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),
分別過(guò)P1、P2、P3作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,
=(x1+)+(x2+)+(x3+)=x1+x2+x3+3
∵x1+x2+x3=4,∴=7
(2)設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過(guò)P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn
=(x1+1)+(x2+1)+(x3+1)+…+(xn+1)=x1+x2+x3+…+xn+n
           
∴x1+x2+x3+…+xn=n
=n+n=2n
(3)當(dāng)n≥3時(shí),若,求證:;
逆命題:當(dāng)n≥3時(shí),“若,則
設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過(guò)P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn
=(x1+)+(x2+)+(x3+)+…+(xn+)=x1+x2+x3+…+xn+
           
∴x1+x2+x3+…+xn=
=+=np
逆命題為假命題:取n=4時(shí),拋物線l的焦點(diǎn)為F(,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),分別過(guò)P1、P2、P3,P4作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,Q4,
=x1+x2+x3+x4+2p=4p
∴x1+x2+x3+x4=2p
不妨取,,,則
,,,是一個(gè)當(dāng)n=4時(shí),該逆命題的一個(gè)反例.
點(diǎn)評(píng):本題考查拋物線的定義,考查向量的運(yùn)算,解題的關(guān)鍵是正確運(yùn)用拋物線的定義,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)曲線上一點(diǎn)與以此點(diǎn)為切點(diǎn)的切線垂直的直線,叫做曲線在該點(diǎn)的法線.
已知拋物線C的方程為y=ax2(a>0,x≠0).點(diǎn)M(x0,y0)是C上任意點(diǎn),過(guò)點(diǎn)M作C的切線l,法線m.
(I)求法線m與拋物線C的另一個(gè)交點(diǎn)N的橫坐標(biāo)xN取值范圍;
(II)設(shè)點(diǎn)F是拋物線的焦點(diǎn),連接FM,過(guò)點(diǎn)M作平行于y軸的直線n,設(shè)m與x軸的交點(diǎn)為S,n與x軸的交點(diǎn)為K,設(shè)l與x軸的交點(diǎn)為T,求證∠SMK=∠FMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線方程C:y2=2px(p>0),點(diǎn)F為其焦點(diǎn),點(diǎn)N(3,1)在拋物線C的內(nèi)部,設(shè)點(diǎn)M是拋物線C上的任意一點(diǎn),|
MF
|+|
MN
|
的最小值為4.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)F作直線l與拋物線C交于不同兩點(diǎn)A、B,與y軸交于點(diǎn)P,且
PF
=λ1
FA
=λ2
FB
,試判斷λ12是否為定值?若是定值,求出該定值并證明;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0108 模擬題 題型:解答題

已知拋物線方程C:y2=2px(p>0),點(diǎn)F為其焦點(diǎn),點(diǎn)N(3,1)在拋物線C的內(nèi)部,設(shè)點(diǎn)M是拋物線C上的任意一點(diǎn),的最小值為4,
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)點(diǎn)F作直線l與拋物線C交于不同兩點(diǎn)A、B,與y軸交于點(diǎn)P,且,試判斷λ12是否為定值?若是定值,求出該定值并證明;若不是定值,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:模擬題 題型:解答題

已知拋物線C的方程為y2=2x,焦點(diǎn)為F,過(guò)拋物線C的準(zhǔn)線與x軸的交點(diǎn)的直線為l。
(1)若直線l與拋物線C交于A、B兩點(diǎn),且|FA|=2|FB|,求k的值;
(2)設(shè)點(diǎn)P是拋物線C上的動(dòng)點(diǎn),點(diǎn)R、N在y軸上,圓(x- 1)2+y2=1內(nèi)切于△PRN,求△PRN面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年安徽省合肥一中高考數(shù)學(xué)沖刺最后一卷(理科)(解析版) 題型:解答題

過(guò)曲線上一點(diǎn)與以此點(diǎn)為切點(diǎn)的切線垂直的直線,叫做曲線在該點(diǎn)的法線.
已知拋物線C的方程為y=ax2(a>0,x≠0).點(diǎn)M(x,y)是C上任意點(diǎn),過(guò)點(diǎn)M作C的切線l,法線m.
(I)求法線m與拋物線C的另一個(gè)交點(diǎn)N的橫坐標(biāo)xN取值范圍;
(II)設(shè)點(diǎn)F是拋物線的焦點(diǎn),連接FM,過(guò)點(diǎn)M作平行于y軸的直線n,設(shè)m與x軸的交點(diǎn)為S,n與x軸的交點(diǎn)為K,設(shè)l與x軸的交點(diǎn)為T,求證∠SMK=∠FMN

查看答案和解析>>

同步練習(xí)冊(cè)答案