【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 為參數(shù), ),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線 .

(1)試將曲線化為直角坐標(biāo)系中的普通方程,并指出兩曲線有公共點(diǎn)時的取值范圍;

(2)當(dāng)時,兩曲線相交于 兩點(diǎn),求.

【答案】(1) , ; ;(2).

【解析】試題分析:

(1)由題意計(jì)算可得曲線化為直角坐標(biāo)系中的普通方程為, 的取值范圍是;

(2)首先求解圓心到直線的距離,然后利用圓的弦長計(jì)算公式可得.

試題解析:

(1)曲線 消去參數(shù)可得普通方程為.

曲線 ,兩邊同乘.可得普通方程為.

代入曲線的普通方程得: ,

而對,即,所以故當(dāng)兩曲線有公共點(diǎn)時, 的取值范圍為.

(2)當(dāng)時,曲線 ,

兩曲線交點(diǎn), 所在直線方程為.

曲線的圓心到直線的距離為,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)Pi(xi , yi)在直線li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,則 + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的流程圖如圖所示,運(yùn)行相應(yīng)程序,輸出S的值是(

A.60
B.61
C.62
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是計(jì)算1+ + +…+ 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填的是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2014年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下表所示.

組號

分組

頻數(shù)

頻率

第1組

[160,165)

5

0.050

第2組

[165,170)

n

0.350

第3組

[170,175)

30

p

第4組

[175,180)

20

0.200

第5組

[180,185]

10

0.100

合計(jì)

100

1.000


(1)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函數(shù)f(x)= cos2x
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費(fèi)每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個顧客均分別消費(fèi)了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名同學(xué)參加某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績落在, 中的學(xué)生人數(shù);

)從成績在的學(xué)生中任選2人,求此2人的成績都在中的概率.

查看答案和解析>>

同步練習(xí)冊答案