【題目】第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.

分類意識(shí)強(qiáng)

分類意識(shí)弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說(shuō)明你的理由;

2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺(jué)垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺(jué)垃圾分類年限的調(diào)查,記選出自覺(jué)垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.

參考公式:,其中

下面的臨界值表僅供參考

【答案】1)有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.見(jiàn)解析(2)分布列見(jiàn)解析,期望為1

【解析】

1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為可得列聯(lián)表,然后計(jì)算后可得結(jié)論;

(2)由已知的取值分別為,分別計(jì)算概率得分布列,由公式計(jì)算出期望.

解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識(shí)強(qiáng)的概率為,可得分類意識(shí)強(qiáng)的有戶,故可得列聯(lián)表如下:

分類意識(shí)強(qiáng)

分類意識(shí)弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

因?yàn)?/span>的觀測(cè)值,

所以有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.

2)現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,選出戶進(jìn)行自覺(jué)垃圾分類年限的調(diào)查,記選出自覺(jué)垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,

,

,

的分布列為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)原點(diǎn)O且斜率不為0的直線與橢圓C交于P,Q兩點(diǎn).

1)若為橢圓C的一個(gè)焦點(diǎn),求橢圓C的標(biāo)準(zhǔn)方程;

2)若經(jīng)過(guò)橢圓C的右焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線OP的方程,若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(其中,是自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若不等式對(duì)于恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.

1)求每件產(chǎn)品的平均銷售利潤(rùn);

2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.

表中,,

根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用(萬(wàn)元)的回歸方程.

①求關(guān)于的回歸方程;

②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤(rùn)營(yíng)銷費(fèi)用,取

附:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)設(shè)的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:

(2)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線的極坐標(biāo)方程為(常數(shù)),曲線的參數(shù)方程為為參數(shù)).

1)求曲線的直角坐標(biāo)方程和的普通方程;

2)若曲線,有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案