在等差數(shù)列{an}中,已知a4+a8=16,則a2+a10=
A.12B.16C.20D.24
B
由等差數(shù)列的性質(zhì)知,,故選B
考點(diǎn)定位:本題是等差數(shù)列問(wèn)題,意在考查學(xué)生對(duì)于等差數(shù)列的性質(zhì):若的運(yùn)用能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,
(1)求并猜想的值;
(2)用數(shù)學(xué)歸納法證明(1)中所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列
(1)求的值;
(2)猜想的表達(dá)式并用數(shù)學(xué)歸納法證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知數(shù)列{}的首項(xiàng)a1=5,前n項(xiàng)和為Sn,且Sn+1=2Sn+n+5
(1)求證{1+}為等比數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(2)是數(shù)列{}前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,,是數(shù)列的前項(xiàng)和,且.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)若 是數(shù)列的前項(xiàng)和,且對(duì)一切都成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某企業(yè)去年的純利潤(rùn)為500萬(wàn)元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進(jìn)行技術(shù)改造,預(yù)測(cè)今年起每年比上一年純利潤(rùn)減少20萬(wàn)元.今年初該企業(yè)一次性投入資金600萬(wàn)元進(jìn)行技術(shù)改造,預(yù)測(cè)在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤(rùn)為萬(wàn)元(為正整數(shù));設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為萬(wàn)元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為萬(wàn)元(需扣除技術(shù)改造資金).
(1)求的表達(dá)式;
(2)依上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過(guò)多少年,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)等差數(shù)列{an}中,公差d≠0,已知數(shù)列是等比數(shù)列,其中k1=1,k2=7,k3=25.
(1)求數(shù)列{kn}的通項(xiàng);
(2)若a1=9,設(shè)bn= +,Sn=b12+b22+b32+…+ bn2, Tn= + + +…+,試判斷數(shù)列{Sn+Tn}前100項(xiàng)中有多少項(xiàng)是能被4整除的整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列,若,則=                     (   )
A.27B.36C.45D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列是等差數(shù)列, 若  則(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案