【題目】今年學雷鋒日,某中學計劃從高中三個年級選派4名教師和若干名學生去當學雷鋒文明交通宣傳志愿者,用分層抽樣法從高中三個年級的相關人員中抽取若干人組成文明交通宣傳小組,學生的選派情況如下:

年級

相關人數(shù)

抽取人數(shù)

高一

99

高二

27

高三

18

2

(Ⅰ)求,的值;

(Ⅱ)若從選派的高一、高二、高三年級學生中抽取3人參加文明交通宣傳,求他們中恰好有1人是高三年級學生的概率;

(Ⅲ)若4名教師可去、三個學雷鋒文明交通宣傳點進行文明交通宣傳,其中每名教師去、、三個文明交通宣傳點是等可能的,且各位教師的選擇相互獨立.記到文明交通宣傳點的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

【答案】(Ⅰ),;(Ⅱ);(Ⅲ)詳見解析.

【解析】

(Ⅰ)利用分層抽樣的性質(比例關系)可求x,y;

(Ⅱ)列出從高二、高三年級抽取的參加文明交通宣傳的5個人中選3個人的所有基本事件,找出其中3人中有2人來自高二年級,1人來自高三年級的基本事件,利用古典概型的概率計算公式求解;

(Ⅲ)首先列出的所有取值,再利用二項分布即可求出的分布列以及數(shù)學期望.

解:(Ⅰ)由題意可得,所以,.

(Ⅱ)設“他們中恰好有1人是高三年級學生”為事件,則.

(Ⅲ)的所有取值為0,1,2,3,4.由題意可知,每位教師選擇、三個學雷鋒文明交通宣傳點的概率都是.

所以;;

;;

;

隨機變量的分布列為:

0

1

2

3

4

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.,則“”是“”的必要而不充分條件

D.,則“”是“”的必要 不 充 分 條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)試判斷函數(shù)上的單調性,并說明理由;

2)若是在區(qū)間上的單調函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法給出了勾股定理的詳細證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內隨機地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左、右焦點分別為,,下頂點為,為坐標原點,點到直線的距離為,為等腰直角三角形.

(1)求橢圓的標準方程;

(2)直線與橢圓交于,兩點,若直線與直線的斜率之和為,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(

A.若無窮數(shù)列單調遞增,則數(shù)列的極限存在

B.數(shù)列的一個極限值為0

C.若存在常數(shù),使得恒成立,則無窮數(shù)列的極限存在

D.若無窮數(shù)列的極限存在,則存在常數(shù),使得恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在,,.

(1)求角的大小;

(2)設數(shù)列滿足,項和為,,的值.

【答案】(1);(2).

【解析】試題分析:

(1)由題意結合三角形內角和為可得.由余弦定理可得,,結合勾股定理可知為直角三角形,.

(2)結合(1)中的結論可得 . 據(jù)此可得關于實數(shù)k的方程,解方程可得,.

試題解析:

(1)由已知,又,所以.又由,

所以,所以,

所以為直角三角形,.

(2) .

所以 ,得

,所以,所以,所以.

型】解答
束】
18

【題目】已知點是平行四邊形所在平面外一點,如果,,.(1)求證:是平面的法向量;

(2)求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在高二年級學生中,對自然科學類、社會科學類校本選修課程的選課意向進行調查.現(xiàn)從高二年級學生中隨機抽取180名學生,其中男生105名;在這180名學生中選擇社會科學類的男生、女生均為45.

(1)根據(jù)抽取的180名學生的調查結果,完成下面的2×2列聯(lián)表.

(2)判斷能否在犯錯誤的概率不超過0.025的前提下認為科類的選擇與性別有關?

選擇自然科學類

選擇社會科學類

合計

男生

女生

合計

參考公式:,其中.

P(K2k0)

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

同步練習冊答案