已知方程
x2
3+k
+
y2
2-k
=1
,表示焦點(diǎn)在y軸的橢圓,則k的取值范圍是______.
∵方程
x2
3+k
+
y2
2-k
=1
,表示焦點(diǎn)在y軸的橢圓,
∴2-k>3+k>0,解不等式得-3<k<-
1
2

故k的取值范圍是(-3,-
1
2
)

故答案為:(-3,-
1
2
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:k>3;q:方程
x2
3-k
+
y2
k-1
=1
表示雙曲線.則p是q的(  )
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x23
+y2=1
.如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)B,G能否關(guān)于x軸對(duì)稱(chēng)?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程
x2
3+k
+
y2
2-k
=1
表示橢圓,則k的取值范圍為
(-3,-
1
2
)∪(-
1
2
,2)
(-3,-
1
2
)∪(-
1
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程
x2
3+k
+
y2
2-k
=1
,表示焦點(diǎn)在y軸的橢圓,則k的取值范圍是
(-3,-
1
2
)
(-3,-
1
2
)

查看答案和解析>>

同步練習(xí)冊(cè)答案