給定下列命題:
①“若k>0,則方程x2+2x-k=0”有實(shí)數(shù)根;
②若a>b>0,c>d>0,則ac>bd;
③對(duì)角線相等的四邊形是矩形;
④若xy=0,則x、y中至少有一個(gè)為0.
其中真命題的序號(hào)是( 。
分析:①中,k>0時(shí),△>0,故方程x2+2x-k=0”有實(shí)數(shù)根;
②由不等式的性質(zhì)知,是真命題;
③如等腰梯形對(duì)角線相等,不是矩形;
④若xy=0,則x=0或y=0,故可判斷真假.
解答:解:①中△=4-4(-k)=4+4k>0,故為真命題;
②由不等式的性質(zhì)知,a>b>0,c>d>0,則ac>bd,顯然是真命題;
③如等腰梯形對(duì)角線相等,不是矩形,故為假命題;
④若xy=0,則x=0或y=0,即x、y中至少有一個(gè)為0,為真命題.
故選B.
點(diǎn)評(píng):本題考查命題真假的判斷,考查學(xué)生分析解決問題的能力,知識(shí)綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的面積為
1
2

②若a、β為銳角,tan(α+β)=
1
3
,tanβ=
1
2
α+2β=
π
4

③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長,且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
(1)空間直角坐標(biāo)系O-XYZ中,點(diǎn)A(-2,3,-1)關(guān)于平面XOZ的對(duì)稱點(diǎn)為A′(-2,-3,-1).
(2)棱長為1的正方體外接球表面積為8π.
(3)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2n+c(c為常數(shù)),則c=-1.
(4)若非零實(shí)數(shù)a1,b1,a2,b2滿足
a1
a2
=
b1
b2
,則集合{x|a1x+b1>0}={x|a2x+b2>0}.
(5)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,則點(diǎn)P1(1,
S1
1
)、P2(2,
S2
2
)、…、Pn(n,
Sn
n
)
(n∈N*)必在同一直線上.
以上正確的命題是
(1)(3)(5)
(1)(3)(5)
(請(qǐng)將你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:其中真命題的個(gè)數(shù)是( 。
(1)若k>0,則方程x2+2x-k=0有實(shí)數(shù)根;
(2)“若a>b,則a+c>b+c”的否命題;
(3)“矩形的對(duì)角線相等”的逆命題;
(4)“若xy=0,則x,y中至少有一個(gè)為0”的逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x)與y=f-1(x)-1的圖象關(guān)于直線x-y+1=0對(duì)稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)

⑤若sinx+siny=
1
3
,則siny-cos2x
的最大值為
4
3

則真命題的序號(hào)是
①②③④
①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案