【題目】在平面直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為t為參數(shù),0απ),曲線C2的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線C2的極坐標(biāo)方程;

2)設(shè)曲線C1與曲線C2的交點(diǎn)分別為A,BM(﹣2,0),求|MA|2+|MB|2的最大值及此時(shí)直線C1的傾斜角.

【答案】1ρ2+2ρcosθ2ρsinθ10;(2)最大值10,

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換,進(jìn)一步利用三角函數(shù)關(guān)系式的變換和余弦型函數(shù)性質(zhì)的應(yīng)用求出結(jié)果.

2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用和三角函數(shù)關(guān)系式的恒等變換及余弦型函數(shù)性質(zhì)的應(yīng)用求出結(jié)果.

解:(1)曲線C2的參數(shù)方程為φ為參數(shù)),

轉(zhuǎn)換為直角坐標(biāo)方程為(x+12+y123.

轉(zhuǎn)換為極坐標(biāo)方程為ρ2+2ρcosθ2ρsinθ10.

2)把直線C1的參數(shù)方程為t為參數(shù),0απ),代入(x+12+y123,

得到(﹣2+tcosα+12+tsinα123,

整理得t22sinα+cosαt10

所以t1+t22cosα+sinα),t1t2=﹣1,

則:|MA|2+|MB|241+2sinαcosα+24sin2α+6,

當(dāng)時(shí),|MA|2+|MB|2的最大值10.

此時(shí)直線C1的傾斜角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,焦距為,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),若,且,則橢圓的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代著名數(shù)學(xué)經(jīng)典,其中對(duì)勾股定理的論述,比西方早一千多年,其中有這樣一個(gè)問(wèn)題:今有圓材埋在壁中,不知大;以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長(zhǎng)1尺,問(wèn)這塊圓柱形木料的直徑是多少?長(zhǎng)為0.5丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).己知弦尺,弓形高寸,估算該木材鑲嵌墻內(nèi)部分的體積約為( )(注:一丈=10=100寸,

A.300立方寸B.305.6立方寸C.310立方寸D.316.6立方寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代的四書(shū)是指:《大學(xué)》、《中庸》、《論語(yǔ)》、《孟子》,甲、乙、丙、丁名同學(xué)從中各選一書(shū)進(jìn)行研讀,已知四人選取的書(shū)恰好互不相同,且甲沒(méi)有選《中庸》,乙和丙都沒(méi)有選《論語(yǔ)》,則名同學(xué)所有可能的選擇有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),記以,為直徑端點(diǎn)的圓為圓.

1)證明:圓與拋物線的準(zhǔn)線相切;

2)設(shè),點(diǎn)在焦點(diǎn)的右側(cè),圓軸交于兩點(diǎn),記的面積為,的最大值(其中,點(diǎn)為圓與拋物線準(zhǔn)線的切點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知的“太極圖”,其形狀如對(duì)稱的陰陽(yáng)兩魚(yú)互抱在一起,因此被稱為“陰陽(yáng)魚(yú)太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”的一個(gè)示意圖,整個(gè)圖形是一個(gè)圓面,其中黑色區(qū)域在軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:

①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色部分的概率是;

②當(dāng)時(shí),直線與白色部分有公共點(diǎn);

③黑色陰影部分中一點(diǎn),則的最大值為2;

④設(shè)點(diǎn),點(diǎn)在此太極圖上,使得,的范圍是

其中所有正確結(jié)論的序號(hào)是(

A.①②B.②③C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)的直線,兩點(diǎn),圓是以線段為直徑的圓.

1)證明:坐標(biāo)原點(diǎn)在圓上;

2)設(shè)圓過(guò)點(diǎn),求直線與圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求的單調(diào)性和極值;

(Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案