如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個動點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)點(diǎn)D位于y軸的正半軸上時,求直線PQ的方程;
(3)若G是圓C上的另一個動點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.
(1)=1(2)x-2y+4=0(3)
(1)連結(jié)BF,由已知BF=BE,所以BC+BF=BC+BE=CE=4,
所以點(diǎn)B的軌跡是以C、F為焦點(diǎn),長軸為4的橢圓,所以B點(diǎn)的軌跡方程為=1.
(2)當(dāng)點(diǎn)D位于y軸的正半軸上時,因?yàn)镈是線段EF的中點(diǎn),O為線段CF的中點(diǎn),所以CE∥OD,且CE=2OD,所以E、D的坐標(biāo)分別為(-1,4)和(0,2).
因?yàn)镻Q是線段EF的垂直平分線,所以直線PQ的方程為y=x+2,即直線PQ的方程為x-2y+4=0.
(3)設(shè)點(diǎn)E、G的坐標(biāo)分別為(x1,y1)和(x2,y2),則點(diǎn)M的坐標(biāo)為,因?yàn)辄c(diǎn)E、G均在圓C上,且FG⊥FE,所以(x1+1)2=16,①,(x2+1)2=16,②
(x1-1)(x2-1)+y1y2=0,③
所以=15-2x1,=15-2x2,x1x2+y1y2=x1+x2-1.所以MO2[(x1+x2)2+(y1+y2)2]=·[()+()+2(x1x2+y1y2)]=[15-2x1+15-2x2+2(x1+x2-1)]=7,即M點(diǎn)到坐標(biāo)原點(diǎn)O的距離為定值,且定值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓()的短軸長為2,離心率為.過點(diǎn)M(2,0)的直線與橢圓相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若點(diǎn)關(guān)于軸的對稱點(diǎn)是,證明:直線恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)過點(diǎn)Q(0,)的直線與橢圓交于A、B兩點(diǎn),與直線y=2交于點(diǎn)M(直線AB不經(jīng)過P點(diǎn)),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù),使得若存在,求出名的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩條相交線段、的四個端點(diǎn)都在橢圓上,其中,直線的方程為,直線的方程為

(1)若,,求的值;
(2)探究:是否存在常數(shù),當(dāng)變化時,恒有?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓+y2=1的左頂點(diǎn)為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1)當(dāng)直線AM的斜率為1時,求點(diǎn)M的坐標(biāo);
(2)當(dāng)直線AM的斜率變化時,直線MN是否過x軸上的一定點(diǎn)?若過定點(diǎn),請給出證明,并求出該定點(diǎn);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個動點(diǎn),

過Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若斜率為的直線l與橢圓=1(a>b>0)有兩個不同的交點(diǎn),且這兩個交點(diǎn)在x軸上的射影恰好是橢圓的兩個焦點(diǎn),則該橢圓的離心率為________.

查看答案和解析>>

同步練習(xí)冊答案