(本小題滿分12分)
已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點,AE與BD交于O點,
AB=BC=2CD,PO⊥平面ABCD.

(1)求證:BD⊥PE;
(2)若AO=2PO,求二面角D-PE-B的余弦值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)在幾何體中,是等腰直角三角形,,都垂直于平面,且,點的中點。

(1)求證:平面
(2)求面與面所成的角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(課改班做) 如圖5,等邊△內接于△,且DE//BC,已知于點H,BC=4,AH=,求△的邊長.                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABC和DBC所在的平面互相垂直,且AB=BC=BD,CBA=DBC= 60°,(1) 求證:直線AD⊥直線BC;(2)求直線AD與平面BCD所成角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,DC⊥平面ABC,EBDC,ACBCEB=2DC=2,∠ACB=120°,P、Q分別為AE、AB的中點.

(1)證明:PQ∥平面ACD;
(2)求AD與平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在空間中,若射線、兩兩所成角都為,且,,則直線 與平面所成角的余弦值為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知四棱錐P—ABCD的底面是直角梯形,∠ABC=∠BCD =90o,AB=BC=PB=PC=2CD=2,側面PBC⊥底面ABCD,O是BC的中點,AO交BD于E.

(1)求證:PA⊥BD;
(2)求二面角P—DC—B的大;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知二面角α-l-β的大小為600,m、n為異面直線,且m⊥α,n⊥β,則m、n所成的角為(   )
A.300B.600C.900D.1200

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知六棱錐的底面是正六邊形,平面.則下列結論不正確的是
A.平面B.平面
C.平面D.平面

查看答案和解析>>

同步練習冊答案