已知正三棱錐ABC,點(diǎn)P,A,B,C都在半徑為的求面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為________。
正三棱錐P-ABC可看作由正方體PADC-BEFG截得,如圖所示,
PF為三棱錐P-ABC的外接球的直徑,且,設(shè)正方體棱長(zhǎng)為a,則
,得,所以,因?yàn)榍蛐牡狡矫鍭BC的距離為.
考點(diǎn)定位:本題考查三棱錐的體積與球的幾何性質(zhì),意在考查考生作圖的能力和空間想象能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,側(cè)面ABB1A1是邊長(zhǎng)為2的菱形,且,M是AB的中點(diǎn),

(1)求證:平面ABC;
(2)求點(diǎn)M到平面AA1C1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直三棱柱中,,,,點(diǎn)是棱的中點(diǎn).

(Ⅰ)證明:平面AA1C1C平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在如圖所示的幾何體中,四邊形為正方形,平面,,


(Ⅰ)若點(diǎn)在線段上,且滿足,求證:平面
(Ⅱ)求證:平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線與平面有以下三個(gè)命題
⑴若
⑵若
⑶若,其中真命題有
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在四面體ABCD中,若截面PQMN是正方形,則在下列命題中,錯(cuò)誤的為
A.ACBD
B.AC∥截面PQMN
C.ACBD
D.異面直線PMBD所成的角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中, P是底面ABCD內(nèi)的動(dòng)點(diǎn),PD1與底面ABCD所成角等于平面PB1C1與底面ABCD所成角,則動(dòng)點(diǎn)P的軌跡是(     )
A.圓弧B.橢圓弧C.雙曲線弧D.拋物線弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,直線,則下列四個(gè)命題:①;②;③;④.其中正確的是(     ).
A.①②B.③④C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是(  )
A.直線a、b互相異面,直線b、c相互異面,則直線a、c互相異面
B.直線a、b互相垂直,直線b、c互相垂直,則直線a、c也互相垂直
C.直線a、b互相平行,直線b、c互相平行,則直線a、c也互相平行
D.直線a、b相交,直線b、c也相交,則直線a、c也相交

查看答案和解析>>

同步練習(xí)冊(cè)答案