【題目】

美國華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場造成產(chǎn)品銷售越來越難,為此某廠家舉行大型的促銷活動(dòng),經(jīng)測算該產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足,已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),每件產(chǎn)品的銷售價(jià)格定為.

)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù)(利潤=總售價(jià)-成本-促銷費(fèi));

)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大.

【答案】1,(

2)促銷費(fèi)用投入1萬元時(shí),廠家的利潤最大

【解析】

(1)由題意可知該產(chǎn)品售價(jià)為元,,然后化簡后可得,(.

(2) 顯然可利用基本不等式求其最值即可.

1)由題意知,該產(chǎn)品售價(jià)為元,

代入化簡的,(

2, 當(dāng)且僅當(dāng)時(shí),上式取等號(hào) 所以促銷費(fèi)用投入1萬元時(shí),廠家的利潤最大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.

1)若圓軸相切,求圓的方程;

2)已知,圓軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條與軸不重合的直線與圓相交于兩點(diǎn).問:是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車流量×(萬輛)

50

51

54

57

58

PM2.5的濃度(微克/立方米)

60

70

74

78

79

1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)若周六同一時(shí)間段的車流量是25萬輛,試根據(jù)(1)求出的線性回歸方程,預(yù)測此時(shí)PM2.5的濃度為多少(保留整數(shù))?

參考公式:由最小二乘法所得回歸直線的方程是:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x)若存在x0∈Rf(x0)x0成立,則稱x0f(x)的不動(dòng)點(diǎn).已知f(x)ax2(b1)xb1(a≠0)

(1)當(dāng)a1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(2)的條件下,若yf(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且AB兩點(diǎn)關(guān)于直線ykx對(duì)稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,,,,則所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形中,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且,如圖2.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.

1)求PX=2);

2)求事件X=4且甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn)將只小鼠隨機(jī)分成、兩組,每組只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比根據(jù)試驗(yàn)數(shù)據(jù)分別得到如圖所示的直方圖:

根據(jù)頻率分布直方圖估計(jì),事件:“乙離子殘留在體內(nèi)的百分比不高于”發(fā)生的概率.

1)根據(jù)所給的頻率分布直方圖估計(jì)各段頻數(shù);

(附:頻數(shù)分布表)

組實(shí)驗(yàn)甲離子殘留頻數(shù)表

組實(shí)驗(yàn)乙離子殘留頻數(shù)表

2)請估計(jì)甲離子殘留百分比的中位數(shù),請估計(jì)乙離子殘留百分比的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對(duì) 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案