在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ=2cos.若直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),則|AB|=________.
首先消去參數(shù)t,可得直線(xiàn)方程為 xy=0,極坐標(biāo)方程化為直角坐標(biāo)方程為=1,根據(jù)直線(xiàn)與圓的相交弦長(zhǎng)公式可得
|AB|=2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(1)求圓的直角坐標(biāo)方程;
(2)若是直線(xiàn)與圓面的公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為ρcos=a,且點(diǎn)A在直線(xiàn)上.
(1)求a的值及直線(xiàn)的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為,(α為參數(shù)),試判斷直線(xiàn)與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線(xiàn)l的極坐標(biāo)方程為ρsin(θ-)=6,圓C的參數(shù)方程為(θ為參數(shù)),求直線(xiàn)l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知☉O1和☉O2的極坐標(biāo)方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù)).
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)若兩圓的圓心距為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線(xiàn)C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點(diǎn)都在C2上,且A,BC,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為,
(1)求點(diǎn)A,B,CD的直角坐標(biāo);
(2)設(shè)PC1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線(xiàn)與圓相交的弦長(zhǎng)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在極坐標(biāo)系中,點(diǎn)和圓的圓心的距離為(   )
A.B. 2 C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在極坐標(biāo)系)中,直線(xiàn)被圓截得的弦長(zhǎng)是         

查看答案和解析>>

同步練習(xí)冊(cè)答案