已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是71.

(1)求橢圓C的方程;

(2)P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

 

112)①當(dāng)λ時,軌跡是兩條平行于x軸的線段.當(dāng)λ時,當(dāng)0<λ<時,點M的軌跡為中心在原點、實軸在y軸上的雙曲線滿足-4≤x≤4的部分;當(dāng)<λ<1時,點M的軌跡為中心在原點、長軸在x軸上的橢圓滿足-4≤x≤4的部分;當(dāng)λ≥1時,點M的軌跡為中心在原點,長軸在x軸上的橢圓.

【解析】(1)設(shè)橢圓長半軸長及半焦距分別為a,c,由已知得解得b2a2c2,b, 所以橢圓C的方程為1.

(2)設(shè)M(x,y),其中x[4,4],由已知λ2及點P在橢圓C上可得λ2,整理得(16λ29)x216λ2y2112,其中x[4,4]

當(dāng)λ時,化簡得9y2112,所以點M的軌跡方程為y± (4≤x≤4).軌跡是兩條平行于x軸的線段.

當(dāng)λ時,方程變形為1,其中x[4,4].當(dāng)0<λ<時,點M的軌跡為中心在原點、實軸在y軸上的雙曲線滿足-4≤x≤4的部分;當(dāng)<λ<1時,點M的軌跡為中心在原點、長軸在x軸上的橢圓滿足-4≤x≤4的部分;當(dāng)λ≥1時,點M的軌跡為中心在原點,長軸在x軸上的橢圓

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用20練習(xí)卷(解析版) 題型:解答題

如圖,在直三棱柱ABC ?A1B1C1中,AC4,CB2,AA12,ACB60°E、F分別是A1C1,BC的中點.

(1)證明:平面AEB平面BB1C1C;

(2)證明:C1F平面ABE

(3)設(shè)PBE的中點,求三棱錐P ?B1C1F的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用16練習(xí)卷(解析版) 題型:解答題

在四棱錐PABCD中,底面ABCD是邊長為1的正方形,且PA平面ABCD.

(1)求證:PCBD

(2)過直線BD且垂直于直線PC的平面交PC于點E,且三棱錐EBCD的體積取到最大值.

求此時四棱錐EABCD的高;

求二面角ADEB的正弦值的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:解答題

已知橢圓的焦點坐標(biāo)為F1(1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|3.

(1)求橢圓的方程;

(2)F2的直線l與橢圓交于不同的兩點M,N,則F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:填空題

設(shè)F1是橢圓y21的左焦點,O為坐標(biāo)原點,點P在橢圓上,則·的最大值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用12練習(xí)卷(解析版) 題型:填空題

已知雙曲線1(a>0,b>0)的一個焦點與拋物線y24x的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:解答題

已知點A(3,0),B(3,0),動點P滿足|PA|2|PB|.

(1)若點P的軌跡為曲線C,求此曲線的方程;

(2)若點Q在直線l1xy30上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,求|QM|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用10練習(xí)卷(解析版) 題型:填空題

已知各項都為正的等比數(shù)列{an}滿足a7a62a5,存在兩項am,an使得4a1,則的最小值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

如圖,ABC中,A60°A的平分線交BCD,若AB4,且λ (λR),則AD的長為( )

A2 B3 C4 D5

 

查看答案和解析>>

同步練習(xí)冊答案