【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( )
A.3
B.4
C.5
D.6
【答案】B
【解析】解:模擬執(zhí)行程序,可得
a=4,b=6,n=0,s=0
執(zhí)行循環(huán)體,a=2,b=4,a=6,s=6,n=1
不滿足條件s>16,執(zhí)行循環(huán)體,a=﹣2,b=6,a=4,s=10,n=2
不滿足條件s>16,執(zhí)行循環(huán)體,a=2,b=4,a=6,s=16,n=3
不滿足條件s>16,執(zhí)行循環(huán)體,a=﹣2,b=6,a=4,s=20,n=4
滿足條件s>16,退出循環(huán),輸出n的值為4.
故選:B.
【考點精析】根據(jù)題目的已知條件,利用程序框圖的相關(guān)知識可以得到問題的答案,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個,生產(chǎn)一個衛(wèi)兵需5分鐘,生產(chǎn)一個騎兵需7分鐘,生產(chǎn)一個傘兵需4分鐘,已知總生產(chǎn)時間不超過10小時.若生產(chǎn)一個衛(wèi)兵可獲利潤5元,生產(chǎn)一個騎兵可獲利潤6元,生產(chǎn)一個傘兵可獲利潤3元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)x與騎兵個數(shù)y表示每天的利潤W(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,M為AB的中點,點F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求證:CM∥平面BEF;
(3)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填 ( )
A.i>20
B.i<20
C.i>=20
D.i<=20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點,AA1=AB=2.
(1)求證:AB1∥平面BC1D;
(2)若BC=3,求三棱錐D﹣BC1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知左、右焦點分別為的橢圓與直線相交于兩點,使得四邊形為面積等于的矩形.
(1)求橢圓的方程;
(2)過橢圓上一動點(不在軸上)作圓的兩條切線,切點分別為,直線與橢圓交于兩點, 為坐標(biāo)原點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1B1;
(3)求CP與平面BDD1B1所成的角大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA= acosB.
(1)求角B的大。
(2)若b=3,sinC=2sinA,分別求a和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域為[m,n](m<n),值域為[0,1],若n﹣m的最小值為 , 則實數(shù)a的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com