【題目】已知函數(shù)f(x)=xsinx的圖象是下列兩個圖象中的一個,如圖,請你選擇后再根據(jù)圖象作出下面的判斷:若x1,x2∈(),且f(x1)<f(x2),則( )
A.x1>x2B.x1+x2>0C.x1<x2D.x12<x22
【答案】D
【解析】
根據(jù)函數(shù)的解析式f(x)=xsinx,結(jié)合奇偶函數(shù)的判定方法得出函數(shù)f(x)=xsinx是偶函數(shù),其圖象關(guān)于y軸對稱,其圖象是右邊一個圖.再利用正弦函數(shù)的性質(zhì)得出當(dāng)x時和當(dāng)x時,函數(shù)f(x)=xsinx的單調(diào)性,即可對幾個選項進(jìn)行判斷.
解:由于函數(shù)f(x)=xsinx,
∴f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),
∴函數(shù)f(x)=xsinx是偶函數(shù),其圖象關(guān)于y軸對稱,其圖象是右邊一個圖.
且當(dāng)x時,函數(shù)f(x)=xsinx是增函數(shù),
∵x1,x2∈(),函數(shù)f(x)=xsinx是偶函數(shù),且f(x1)<f(x2),
∴ ,又當(dāng)x時,函數(shù)f(x)=xsinx是增函數(shù),
∴,
即x12<x22
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,、分別為、的中點(diǎn),,,.
⑴求證:平面;
⑵求二面角的正弦值;
⑶已知為棱上的點(diǎn),若,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為,最小值為,記,;
(1)求實數(shù)、的值;
(2)若不等式對任意恒成立,求實數(shù)的范圍;
(3)對于定義在上的函數(shù),設(shè),,用任意將劃分成個小區(qū)間,其中,若存在一個常數(shù),使得不等式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試證明函數(shù)是在上的有界變差函數(shù),并求出的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,a∈R.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若x>1時,f(x)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個點(diǎn).
(1)求r的取值范圍;
(2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時,求直線AD與直線BC的交點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)在軸上的射影恰好是橢圓的右焦點(diǎn),橢圓的另一個焦點(diǎn)是,且.
(1)求橢圓的方程;
(2)直線過點(diǎn),且與橢圓交于,兩點(diǎn),求的面積的最大值及此時內(nèi)切圓半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古印度“漢諾塔問題”:一塊黃銅平板上裝著三根金銅石細(xì)柱,其中細(xì)柱上套著個大小不等的環(huán)形金盤,大的在下、小的在上.將這些盤子全部轉(zhuǎn)移到另一根柱子上,移動規(guī)則如下:一次只能將一個金盤從一根柱子轉(zhuǎn)移到另外一根柱子上,不允許將較大盤子放在較小盤子上面.若柱上現(xiàn)有個金盤(如圖),將柱上的金盤全部移到柱上,至少需要移動次數(shù)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com