【題目】函數(shù)在上單調(diào),則的取值范圍是( )
A.B.
C.D.
【答案】A
【解析】
分情況討論函數(shù)的單調(diào)性:①當(dāng)函數(shù)在上單調(diào)遞減時,分區(qū)間使函數(shù)在每個區(qū)間上都單調(diào)遞減,再保證,解出的范圍取交集即可;②當(dāng)函數(shù)在上單調(diào)遞增時,類比單調(diào)遞減求解即可.最后將上面的范圍取并集,即可得到答案.
①當(dāng)函數(shù)在上單調(diào)遞減時,
當(dāng)時,是單調(diào)遞減函數(shù),所以.
當(dāng)時,是單調(diào)遞減函數(shù),所以
因?yàn)?/span>,所以.
當(dāng)時,不具有單調(diào)性,所以舍去.所以.
又因?yàn)楹瘮?shù)在上單調(diào)遞減,
所以,解得或.
由以上可得.
②當(dāng)函數(shù)在上單調(diào)遞增時,
當(dāng)時,是單調(diào)遞增函數(shù),所以.
當(dāng)時,是單調(diào)遞增函數(shù),所以
因?yàn)?/span>,所以.
當(dāng)時,不具有單調(diào)性,所以舍去.所以.
又因?yàn)楹瘮?shù)在上單調(diào)增減
所以,解得.
由以上可得.
綜上可得.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?
(3)如果用抽取的考生成績的情況來估計(jì)全市考生的成績情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,
已知曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.曲線的圖象與軸、軸分別交于兩點(diǎn).
(1)判斷兩點(diǎn)與曲線的位置關(guān)系;
(2)點(diǎn)是曲線上異于兩點(diǎn)的動點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動,平面,且,點(diǎn)、分別是、的中點(diǎn).
(1)求證:平面平面;
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行一項(xiàng)益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個棋子(如圖所示),甲從中記下某個棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是1990年-2017年我國勞動年齡(15-64歲)人口數(shù)量及其占總?cè)丝诒戎厍闆r:
根據(jù)圖表信息,下列統(tǒng)計(jì)結(jié)論不正確的是( 。
A. 2000年我國勞動年齡人口數(shù)量及其占總?cè)丝诒戎氐哪暝龇鶠樽畲?/span>
B. 2010年后我國人口數(shù)量開始呈現(xiàn)負(fù)增長態(tài)勢
C. 2013年我國勞動年齡人口數(shù)量達(dá)到峰值
D. 我國勞動年齡人口占總?cè)丝诒戎貥O差超過
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)直線與的交點(diǎn)為,當(dāng)變化時點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線上的動點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查一款手機(jī)的使用時間,研究人員對該款手機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:
并對不同年齡層的市民對這款手機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
愿意購買該款手機(jī) | 不愿意購買該款手機(jī) | 總計(jì) | |
40歲以下 | 600 | ||
40歲以上 | 800 | 1000 | |
總計(jì) | 1200 |
(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款手機(jī)的平均使用時間;
(2)請將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款手機(jī)”與“市民的年齡”有關(guān).
參考公式:,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com