設(shè)函數(shù)

(1)當(dāng)m為何值時(shí),它是一次函數(shù)?

(2)當(dāng)m為何值時(shí),它是正比例函數(shù)?

答案:略
解析:

若此函數(shù)為一次函數(shù),則應(yīng)滿足,m20

若為正比例函數(shù),除滿足上述條件外,還需m4=0

解:令,m=34,此時(shí)m20

m=34時(shí)是一次函數(shù),m=4時(shí)為正比例函數(shù).


提示:

解這類(lèi)問(wèn)題一是要抓住一次函數(shù)、正比例函數(shù)的定義,二是要注意二者的區(qū)別和聯(lián)系.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且b2+c2-a2=bc.向量
m
=(
3
sin
x
2
,1)  ,
n
=(cos
x
2
cos2
x
2
)

(Ⅰ)求角A的大。
(Ⅱ)設(shè)函數(shù)f(x)=
m
n
,當(dāng)f(B)取最大值
3
2
時(shí),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[-1,0)∪(0,1]上的函數(shù),當(dāng)m,n∈[-1,0)∪(0,1],且m+n=0時(shí),有f(m)+f(n)=0.
(1)證明f(x)是奇函數(shù);
(2)當(dāng)x∈[-1,0)時(shí),f(x)=2ax+
1x2
(a為實(shí)數(shù)).則當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(3)在(2)的條件下,當(dāng)a>-1時(shí),試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線f(x)=ax+blnx-1在點(diǎn)(1,f(1))處的切線為直線y=0.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)函數(shù)數(shù)學(xué)公式,其中m為常數(shù).
(i)求g(x)的單調(diào)遞增區(qū)間;
(ii)求證:當(dāng)1<m<3,x∈(1,e)(其中e=2.71828…)時(shí),總有數(shù)學(xué)公式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)       其中常數(shù)m為整數(shù).

 (1) 當(dāng)m為何值時(shí),

 (2) 定理: 若函數(shù)g(x) 在[a, b ]上連續(xù),且g(a) 與g(b)異號(hào),則至少存在一點(diǎn)x0∈(a,b),使g(x0)=0.

 試用上述定理證明:當(dāng)整數(shù)m>1時(shí),方程f(x)= 0,在[e--m ,e2-m ]內(nèi)有兩個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年福建省寧德市高三畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知曲線f(x)=ax+blnx-1在點(diǎn)(1,f(1))處的切線為直線y=0.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)函數(shù),其中m為常數(shù).
(i)求g(x)的單調(diào)遞增區(qū)間;
(ii)求證:當(dāng)1<m<3,x∈(1,e)(其中e=2.71828…)時(shí),總有成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案