【題目】已知,

(1)求在點(diǎn)處的切線;

(2)討論的單調(diào)性;

(3)當(dāng) 時(shí),求證:

【答案】(1);(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】試題分析:(1)求出原函數(shù)的導(dǎo)函數(shù),求出在處的導(dǎo)數(shù)值,即為切線斜率,代入直線方程的點(diǎn)斜式求得切線方程;
(2)求出原函數(shù)的導(dǎo)函數(shù),可得當(dāng)時(shí)導(dǎo)函數(shù)在定義域內(nèi)大于0恒成立,當(dāng)a<0時(shí)求出導(dǎo)函數(shù)的零點(diǎn),由零點(diǎn)對(duì)函數(shù)的定義域分段,根據(jù)導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào)得到函數(shù)的單調(diào)區(qū)間;
(3)令,求其導(dǎo)函數(shù),得到, 從而證得答案.

試題解析:

1,

處的切線為

2;

當(dāng)時(shí), 恒成立,則上單調(diào)遞增,

當(dāng)時(shí), 上單調(diào)遞減,在上單調(diào)遞增

3先證明: 時(shí), ,

時(shí), 單調(diào)遞減,故

),

上單調(diào)遞減,在上單調(diào)遞增,

,

由于,故

所以內(nèi)恒成立,故內(nèi)單調(diào)遞增

,

所以

故問(wèn)題得證

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是圓的直徑,點(diǎn)在圓上,矩形所在的平面垂直于圓所在的平面,
(1)證明:平面⊥平面;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng) 時(shí),解不等式f(x)≤x+10;
(2)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,AD的中點(diǎn),則圖中共有多少對(duì)線面平行關(guān)系?(

A.2對(duì)
B.4對(duì)
C.6對(duì)
D.8對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人的體重是人的身體素質(zhì)的重要指標(biāo)之一.某校抽取了高二的部分學(xué)生,測(cè)出他們的體重(公斤),體重在40公斤至65公斤之間,按體重進(jìn)行如下分組:第1[40,45),第2[45,50),第3[50,55),第4[55,60),第5[60,65],并制成如圖所示的頻率分布直方圖,已知第1組與第3組的頻率之比為1:3,第3組的頻數(shù)為90.

(Ⅰ)求該校抽取的學(xué)生總數(shù)以及第2組的頻率;

(Ⅱ)學(xué)校為進(jìn)一步了解學(xué)生的身體素質(zhì),在第1組、第2組、第3組中用分層抽樣的方法抽取6人進(jìn)行測(cè)試.若從這6人中隨機(jī)選取2人去共同完成某項(xiàng)任務(wù),求這2人來(lái)自于同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在對(duì)高三學(xué)生的4月理科數(shù)學(xué)調(diào)研測(cè)試的數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)服從正態(tài)分布,現(xiàn)從甲校100分以上(含100分)的200份試卷中用系統(tǒng)抽樣的方法抽取了20份試卷來(lái)分析,統(tǒng)計(jì)如下:

(注:表中試卷編號(hào)

(1)列出表中試卷得分為126分的試卷編號(hào)(寫出具體數(shù)據(jù));

(2)該市又從乙校中也用系統(tǒng)抽樣的方法抽取了20份試卷,將甲乙兩校這40份試卷的得分制作了莖葉圖(如圖6),試通過(guò)莖葉圖比較兩校學(xué)生成績(jī)的平均分及分散程度(均不要求計(jì)算出具體值,給出結(jié)論即可);

(3)在第(2)問(wèn)的前提下,從甲乙兩校這40名學(xué)生中,從成績(jī)?cè)?40分以上(含140分)的學(xué)生中任意抽取3人,該3人在全市前15名的人數(shù)記為,求的分布列和期望.

(附:若隨機(jī)變量服從正態(tài)分布,則 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,則滿足不等式 的實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿a1=a,a2=b,3an+2﹣5an+1+2an=0(n≥0,n∈N),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案