【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的非負(fù)半軸為極軸取相同的長度單位建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù),),直線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若為曲線上任意一點(diǎn),為直線任意一點(diǎn),求的最小值.
【答案】(1) 直線的直角坐標(biāo)方程為,曲線的軌跡方程是上半圓;(2) 的最小值為.
【解析】試題分析:
(1)將曲線的參數(shù)方程中的參數(shù)消去可得普通方程,根據(jù)變換公式消去可得直線的直角坐標(biāo)方程.(2)由于曲線C為半圓,根據(jù)直線和圓相離時(shí),圓上的點(diǎn)到直線的最小距離為圓心到直線的距離減去半徑求解即可.
試題解析:
(1)曲線的參數(shù)方程為(為參數(shù),),
消去參數(shù)可得,
由于,所以,
故曲線的軌跡方程是.
由,可得,即,
把代入上式可得,
故直線的直角坐標(biāo)方程為.
(2)由題意可得點(diǎn)在直線上,點(diǎn)在半圓上,
半圓的圓心到直線的距離等于,
故的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國南北朝時(shí)期的著作《孫子算經(jīng)》中,對(duì)同余除法有較深的研究.設(shè)
為整數(shù),若和被除得的余數(shù)相同,則稱和對(duì)模同余,記為.若,,則的值可以是
A. 2015 B. 2016 C. 2017 D. 2018
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年雙11當(dāng)天,某購物平臺(tái)的銷售業(yè)績高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿意 | 10 | ||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的3次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.
①求隨機(jī)變量X的分布列;
②求X的數(shù)學(xué)期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】稱正整數(shù)集合 A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性質(zhì) P:如果對(duì)任意的i,j(1≤i≤j≤n),與兩數(shù)中至少有一個(gè)屬于A.
(1)分別判斷集合{1,3,6}與{1,3,4,12}是否具有性質(zhì) P;
(2)設(shè)正整數(shù)集合 A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性質(zhì) P.證明:對(duì)任意1≤i≤n(i∈N*),ai都是an的因數(shù);
(3)求an=30時(shí)n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】絕對(duì)值|x﹣1|的幾何意義是數(shù)軸上的點(diǎn)x與點(diǎn)1之間的距離,那么對(duì)于實(shí)數(shù)a,b,的幾何意義即為點(diǎn)x與點(diǎn)a、點(diǎn)b的距離之和.
(1)直接寫出與的最小值,并寫出取到最小值時(shí)x滿足的條件;
(2)設(shè)a1≤a2≤…≤an是給定的n個(gè)實(shí)數(shù),記S=.試猜想:若n為奇數(shù),則當(dāng)x∈ 時(shí)S取到最小值;若n為偶數(shù),則當(dāng)x∈ 時(shí),S取到最小值;(直接寫出結(jié)果即可)
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在九年級(jí)上學(xué)期開始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到頻率分布直方圖(如圖),且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請(qǐng)估計(jì)學(xué)生的跳繩個(gè)數(shù)的眾數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個(gè)數(shù)在,兩組中按分層抽樣的方法抽取9人參加正式測(cè)試,并從中任意選取2人,求2人得分之和不大于34分的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com