【題目】如圖,在三棱錐中,為等腰直角三角形,為等邊三角形,其中O為BC中點(diǎn),且.
(1)求證:平面平面PBC;
(2)若且平面EBC,其中E為AP上的點(diǎn),求CE與平面ABC所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)由題意可得,,利用線面垂直的判定定理證出平面PAO,從而得證.
(2)作PH垂直于平面ABC,垂足為H,由(1)知,點(diǎn)H在直線AO上,以A為原點(diǎn),AC為x軸,AB為y軸,以過(guò)A點(diǎn)與平面ABC垂直的直線為z軸建立空間直角坐標(biāo)系,求出以及平面ABC的一個(gè)法向量,利用空間向量的數(shù)量積即可求解.
(1) 證明:由題可知,,,且,
故平面PAO,又平面PBC,因此平面平面PBC.
(2)作PH垂直于平面ABC,垂足為H,由(1)知,點(diǎn)H在直線AO上.
如圖,以A為原點(diǎn),AC為x軸,AB為y軸,以過(guò)A點(diǎn)與平面ABC垂直的直線為z軸建立空間直角坐標(biāo)系,可得如下坐標(biāo):,,,,
設(shè)P點(diǎn)坐標(biāo)為,利用,,可得.從.
因?yàn)?/span>E為AP上的點(diǎn),故存在實(shí)數(shù),使得,點(diǎn)E坐標(biāo)可設(shè)為,
由平面EBC知,,得,
從而,取平面ABC的一個(gè)法向量.
設(shè)CE與平面ABC所成角的為,.
故CE與平面ABC所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形是邊長(zhǎng)為2的正方形,,為的中點(diǎn),點(diǎn)在上,平面,在的延長(zhǎng)線上,且.
(1)證明:平面.
(2)過(guò)點(diǎn)作的平行線,與直線相交于點(diǎn),點(diǎn)為的中點(diǎn),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)三棱錐的每個(gè)頂點(diǎn)都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)確定的位置(需要說(shuō)明理由),并證明:平面平面.
(2)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟(jì)負(fù)擔(dān),讓更多的孩子接受良好的教育,國(guó)家施行高中生國(guó)家助學(xué)金政策,普通高中國(guó)家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實(shí)際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號(hào)召,通過(guò)各種形式宣傳國(guó)家助學(xué)金政策.為了解某高中學(xué)校對(duì)國(guó)家助學(xué)金政策的宣傳情況,擬采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行采訪調(diào)查.
(1)若該高中學(xué)校有2000名在校學(xué)生,編號(hào)分別為0001,0002,0003,…,2000,請(qǐng)用系統(tǒng)抽樣的方法,設(shè)計(jì)一個(gè)從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫(xiě)出必要的步驟)
(2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級(jí)共評(píng)定出3個(gè)1檔,2個(gè)2檔,1個(gè)3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫(xiě)感想,求這2名同學(xué)不在同一檔的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)舉行文藝比賽,并通過(guò)網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場(chǎng)有5名專家評(píng)委給每位參賽選手評(píng)分,場(chǎng)外觀眾可以通過(guò)網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分由專家評(píng)分和觀眾評(píng)分確定.某選手參與比賽后,現(xiàn)場(chǎng)專家評(píng)分情況如表;場(chǎng)外有數(shù)萬(wàn)名觀眾參與評(píng)分,將評(píng)分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:
專家 | A | B | C | D | E |
評(píng)分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |
(1)求a的值,并用頻率估計(jì)概率,估計(jì)某場(chǎng)外觀眾評(píng)分不小于9的概率;
(2)從5名專家中隨機(jī)選取3人,X表示評(píng)分不小于9分的人數(shù);從場(chǎng)外觀眾中隨機(jī)選取3人,用頻率估計(jì)概率,Y表示評(píng)分不小于9分的人數(shù);試求E(X)與E(Y)的值;
(3)考慮以下兩種方案來(lái)確定該選手的最終得分:方案一:用所有專家與觀眾的評(píng)分的平均數(shù)作為該選手的最終得分,方案二:分別計(jì)算專家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.請(qǐng)直接寫(xiě)出與的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,,,,,,平面.
(1)求證:平面平面;
(2)當(dāng)時(shí),求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓柱底面半徑為1,高為,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其距離最短時(shí)在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時(shí)針旋轉(zhuǎn)后,邊與曲線相交于點(diǎn).
(1)求曲線的長(zhǎng)度;
(2)當(dāng)時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若,點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com