已知:(1+tan10°)(1+tan35°)=2;(1+tan20°)(1+tan25°)=2;(1+tan30°)(1+tan15°)=2通過觀察上述三個等式的規(guī)律,請你寫出一般性的命題,并給出的證明.
【答案】分析:根據(jù)題意可得:若α+β=45°,則(1+tanα)(1+tanβ)=2.因為α+β=45°,所以tan(α+β)=tan45°=,即tanα+tanβ=1-tanαtanβ,即可得到tanα+tanβ+tanαtanβ=1,進(jìn)而得到答案.
解答:解:根據(jù)題意可得:若α+β=45°,則(1+tanα)(1+tanβ)=2.
因為α+β=45°,所以tan(α+β)=tan45°=,即tanα+tanβ=1-tanαtanβ.
所以(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ=2.
所以若α+β=45°,則(1+tanα)(1+tanβ)=2正確.
點評:解決此類問題的關(guān)鍵是熟練掌握歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想),(3)利用一個該生進(jìn)行論證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:(1+tan10°)(1+tan35°)=2;(1+tan20°)(1+tan25°)=2;(1+tan30°)(1+tan15°)=2通過觀察上述三個等式的規(guī)律,請你寫出一般性的命題,并給出的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(2x-1)7=a7x7+a6x6+a5x5+…+a1x+a0
(1)求a5;
(2)求a1+a3+a5+a7的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:(1+tan10°)(1+tan35°)=2;(1+tan20°)(1+tan25°)=2;(1+tan30°)(1+tan15°)=2通過觀察上述三個等式的規(guī)律,請你寫出一般性的命題,并給出的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:(1+tan10°)(1+tan35°)=2;(1+tan20°)(1+tan25°)=2;(1+tan30°)(1+tan15°)=2通過觀察上述三個等式的規(guī)律,請你寫出一般性的命題,并給出的證明.

查看答案和解析>>

同步練習(xí)冊答案