(本小題滿分12分)
是常數(shù),關(guān)于的一元二次方程有實數(shù)解記為事件
(1)若、表示投擲兩枚均勻骰子出現(xiàn)的點數(shù),求;
(2)若,,求

(1)(2)

解析試題分析:(1)方程有實數(shù)解,,即
依題意,、、、、,、、、,
所以,“投擲兩枚均勻骰子出現(xiàn)的點數(shù)”共有種結(jié)果………………2分
當且僅當“、、”,或“、”,或“”時,
不成立
所以滿足的結(jié)果有種        ………………5分,
從而                                ………………6分.
(2)在平面直角坐標系中,直線圍成一個正方形
正方形邊長即直線之間的距離為…………8分
正方形的面積
的面積為                   ………………10分
所以                ………………12分.
考點:古典概型概率與幾何概型概率
點評:古典概型概率需找到所有基本事件種數(shù)與滿足題意要求的基本事件種數(shù),然后求其比值,幾何概型概率一般找的是長度比面積比或體積比

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

從編號為1,2,3,4,5的五個形狀大小相同的球中,任取2個球,求:(1)取到的這2個球編號之和為5的概率;(2)取到的這2個球編號之和為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了參加貴州省高中籃球比賽,某中學決定從四個籃球較強的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強的班級籃球隊員人數(shù)如下表:

班級
高三()班
高三()班
高二()班
高二()班
人數(shù)
12
6
9
9
(Ⅰ)現(xiàn)采取分層抽樣的方法從這四個班中抽取運動員,求應(yīng)分別從這四個班抽出的隊員人數(shù);
(Ⅱ)該中學籃球隊奮力拼搏,獲得冠軍.若要從高三年級抽出的隊員中選出兩位隊員作為冠軍的代表發(fā)言,求選出的兩名隊員來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
甲,乙,丙三位學生獨立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (),且三位學生是否做對相互獨立.記為這三位學生中做對該題的人數(shù),其分布列為:


0
1
2
3





(1) 求至少有一位學生做對該題的概率;
(2) 求,的值;
(3) 求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知箱中裝有4個白球和5個黑球,且規(guī)定:取出一個白球的2分,取出一個黑球的1分.現(xiàn)從該箱中任取(無放回,且每球取到的機會均等)3個球,記隨機變量X為取出3球所得分數(shù)之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)電信公司進行促銷活動,促銷方案為顧客消費1000元,便可獲得獎券一張,每張獎券中獎的概率為,中獎后電信公司返還顧客現(xiàn)金1000元,小李購買一臺價格2400元的手機,只能得2張獎券,于是小李補償50元給同事購買一臺價格600元的小靈通(可以得到三張獎券),小李抽獎后實際支出為X(元).
(I)求X的分布列;(II)試說明小李出資50元增加1張獎券是否劃算。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題14分)口袋內(nèi)有)個大小相同的球,其中有3個紅球和個白球.已知從
口袋中隨機取出一個球是紅球的概率是,且。若有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次取球中恰好取到兩次紅球的概率大于
(Ⅰ)求;
(Ⅱ)不放回地從口袋中取球(每次只取一個球),取到白球時即停止取球,記為第一次取到白球時的取球次數(shù),求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知關(guān)于x的二次函數(shù).
(I)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(II)設(shè)點(a,b)是區(qū)域內(nèi)的一點,求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

同步練習冊答案